The Bohm Criterion
In Plasmas With One or Two Ion Species

Scott D. Baalrud

University of New Hampshire

in collaboration with
Chris C. Hegna and James D. Callen

Low Temperature Plasma Teleseminar, February 25, 2011
Introduction

Part I: One ion species

• Review the conventional kinetic (generalized) Bohm criterion (KBC)
 – Show that it is not so general as one may think

• A KBC can be formulated from positive-exponent velocity moments
 – Avoids problems that arise in the conventional KBC where a v_z^{-1} moment is used

• Consider the role of ion-acoustic instabilities in the presheath
 – Show that ion-acoustic instabilities enhance collisions and can cause Maxwellization of ions and electrons near the sheath edge (if $T_e \gg T_i$)
 – Compare to LIF measurements from Claire et al POP (2006)

Part II: Two ion species

• What determines the Bohm criterion in two ion species plasmas?
 – Bohm criterion is a single constraint in two unknowns (V_1 and V_2)
 – What is the second constraint needed to uniquely determine V_1 and V_2?

• Review the discrepancy between experimental and theoretical literature

• Show that ion-ion two-stream instabilities can be important
 – Instability-enhanced collisions give a strong collisional friction
 – Constitute a stiff system that relates V_1 and V_2
2-scale theory: defining the sheath edge

- There is at least 3 length scales: sheath (λ_D), presheath (λ_{i-n}), transition region ($\lambda_D^{4/5} \lambda_{i-n}^{1/5}$)
- In the limit $\lambda_D \ll \lambda_{i-n}$, the transition region is very narrow (2 scales)

The sheath criterion (Riemann IEEE 1995, & others)

- Define sheath edge as location where quasineutrality breaks down

$$\frac{d^2 \phi}{dz^2} = -4\pi \left[\rho(\phi = 0) + \frac{d\rho}{d\phi} \bigg|_{\phi=0} \phi + \ldots \right] \approx -4\pi \frac{d\rho}{d\phi} \bigg|_{\phi=0} \phi$$

where $\rho \equiv \sum_s q_s n_s$ is the charge density

- Multiplying by $d\phi/dz$ and integrating wrt z yields

$$\frac{E^2}{4\pi} + \frac{d\rho}{d\phi} \bigg|_{\phi=0} \phi^2 = C$$

- Since $\phi \to 0$ as $z/\lambda_D \to \infty$ (on sheath length scale), $C = 0$

- The sheath criterion is then $d\rho/d\phi|_{\phi=0} \leq 0$, or

$$\sum_s q_s \frac{dn_s}{dz} \bigg|_{z=0} \geq 0$$
The original Bohm criterion

- For single species of singly-charged ions and electrons, the SC is

\[
\frac{dn_i}{dz} - \frac{dn_e}{dz} \geq 0
\]

- Bohm assumed Boltzmann distributed electrons

\[
n_e = n_o \exp\left(-\frac{e\phi}{T_e}\right)
\]

and cold ions accelerated by the presheath

\[
\frac{1}{2} M_i V_i^2 = e\phi \quad \Rightarrow \quad V_i = \sqrt{2e\phi/M_i}
\]

- Also using the continuity equation \(d(n_i V_i)/dz = 0\) gives

\[
\frac{dn_e}{dz} = -n_e \frac{e}{T_e} \frac{d\phi}{dz} \quad \text{and} \quad \frac{dn_i}{dz} = -n_i \frac{e}{M_i V_i^2} \frac{d\phi}{dz}
\]

- Putting these into the sheath criterion gives

\[
V_i \geq \sqrt{\frac{T_e}{M_i}} \equiv c_s
\]

What happens for more general ion and electron distributions?
KBC: seek generalization for arbitrary distributions

- The conventional KBC is typically cited as

\[\frac{1}{M_i} \int_{-\infty}^{\infty} d^3v \frac{f_i(\vec{v})}{v_z^2} \leq - \frac{1}{m_e} \int_{-\infty}^{\infty} d^3v \frac{\partial f_e(\vec{v})}{\partial v_z} \]

But there are problems with this!

- Low velocity particles dominate in this equation
 - If \(f_i(v_z = 0) \neq 0 \), the ion term diverges
 - If \(\partial f_e/\partial v_z |_{v_z=0} \neq 0 \) the electron term diverges

- Example: For flowing Maxwellian ions and stationary Maxwellian electrons, the KBC gives

\[\infty \leq n_e/T_e \]

 - The conventional KBC apparently doesn’t work for this example
 - We will show that these distribution functions can be expected

- Apparently the generalized Bohm criterion is not as general as one might think
KBC is based on the (collisionless) Vlasov equation

- Putting \(n_s \equiv \int d^3v f_s \) into the sheath criterion gives

\[
\sum_s q_s \int_{-\infty}^{\infty} d^3v \frac{\partial f_s}{\partial z} \geq 0
\]

- Start from the collisionless Vlasov equation

\[
v_z \frac{\partial f_s}{\partial z} + \frac{q_s}{m_s} E \frac{\partial f_s}{\partial v_z} = 0
\]

- Step 1: Take \(v_z^{-1} \) moment and put into the sheath condition

\[
\sum_s \frac{q_s^2}{m_s} \int_{-\infty}^{\infty} d^3v \frac{1}{v_z} \frac{1}{v_z} \frac{\partial f_s}{\partial v_z} \leq 0
\]

- Step 2: Integrate the ion term by parts (single ion species)

\[
\frac{1}{M_i} \int_{-\infty}^{\infty} d^3v \frac{f_i(\vec{v})}{v_z^2} \leq -\frac{1}{m_e} \int_{-\infty}^{\infty} d^3v \frac{1}{v_z} \frac{\partial f_e(\vec{v})}{\partial v_z}
\]
Derivations of KBC make tacit assumptions on f

- **Issue 1**: The integration-by-parts step
- But, integration-by-parts is only valid if $\partial f_i/\partial v_z|_{v_z=0} = 0$
- The contentious step is of the form

$$
\int_{-\infty}^{\infty} dx \frac{1}{x} \frac{df}{dx} = \int_{-\infty}^{\infty} dx \frac{d}{dx} \left(\frac{f}{x} \right) + \int_{-\infty}^{\infty} dx \frac{f}{x^2},
$$

- Consider the example: $f(x) = \exp(-x^2)$
 - The left side can be evaluated directly to give a finite answer

$$
\int_{-\infty}^{\infty} dx \frac{1}{x} \frac{df}{dx} = -2 \int_{-\infty}^{\infty} dx e^{-x^2} = -2\sqrt{\pi}.
$$

 - But the right side will diverge for this example:

$$
\int_{-\infty}^{\infty} dx \frac{e^{-x^2}}{x^2} = \lim_{\epsilon \to 0} \left(\int_{-|\epsilon|}^{-|\epsilon|} dx \frac{e^{-x^2}}{x^2} + \int_{|\epsilon|}^{\infty} dx \frac{e^{-x^2}}{x^2} \right)
$$

$$
= -2\sqrt{\pi} + \lim_{\epsilon \to 0} \left(\frac{2}{|\epsilon|} e^{-|\epsilon|^2} + 2\sqrt{\pi} \text{erf}(|\epsilon|) \right)
$$

$$
= -2\sqrt{\pi} + \lim_{\epsilon \to 0} \frac{2}{|\epsilon|} e^{-|\epsilon|^2} \to \infty
$$

Effectively assumes that: $\partial f_i/\partial v_z|_{v_z=0} = 0$
Derivations of KBC make tacit assumptions on f

- A second (more significant) restriction arises from taking the v_z^{-1} moment of the collisionless Vlasov equation.

- Consider what happens if the kinetic equation is used

$$v_z \frac{\partial f_s}{\partial z} + \frac{q_s}{m_s} E \frac{\partial f_s}{\partial v_z} = C(f_s)$$

- Taking the v_z^{-1} moment of this and putting the result into the sheath condition gives

$$\sum_s q_s^2 \frac{1}{m_s} \int_{-\infty}^{\infty} d^3v \frac{1}{v_z} \frac{\partial f_s}{\partial v_z} \leq \sum_s \frac{q_s}{E} \int_{-\infty}^{\infty} d^3v \frac{1}{v_z} C(f_s) \quad (1)$$

- The collision operator has the general form

$$C(f_s, f_s') = -\frac{\partial}{\partial \vec{v}} \cdot \int d^3v' \leftrightarrow Q \cdot \left(\frac{1}{m_s'} \frac{\partial}{\partial \vec{v}'} - \frac{1}{m_s} \frac{\partial}{\partial \vec{v}} \right) f_s(\vec{v}) f_s'(\vec{v}')$$

- The collision operator term also diverges when $\frac{\partial f}{\partial v_z}|_{v_z=0} \neq 0$, or $f_s(v_z = 0) \neq 0$

- If the distribution contains slow particles, it is inconsistent to neglect the collision operator term, but not the left-hand side of (1)

- The same problems can arise from an ionization source term $C(f_s) \rightarrow S_i$
Instead, consider positive-exponent moments

- The density moment ($\int d^3v \ldots$) of the kinetic equation yields the continuity equation

$$\frac{\partial n_s}{\partial t} + \nabla \cdot (n_s \vec{V}_s) = 0$$ \hspace{1cm} (2)

in which the density and fluid flow velocity are defined as:

$$n_s \equiv \int_{-\infty}^{\infty} d^3v \ f_s \quad \text{and} \quad \vec{V}_s \equiv \frac{1}{n_s} \int_{-\infty}^{\infty} d^3v \ \vec{v}f_s$$

- The momentum moment ($\int d^3v \ m_s \vec{v} \ldots$) yields the momentum evolution equation

$$m_s n_s \left(\frac{\partial \vec{V}_s}{\partial t} + \vec{V}_s \cdot \nabla \vec{V}_s \right) = n_s q_s \vec{E} - \frac{\partial p_s}{\partial \vec{x}} - \nabla \cdot \vec{\pi}_s + \vec{R}_s.$$ \hspace{1cm} (3)

in which the scalar pressure, stress tensor, temperature and friction force density are defined as:

$$p_s \equiv \int_{-\infty}^{\infty} d^3v \ \frac{1}{3} m_s \vec{v}_r^2 f_s = n_s T_s, \quad \vec{\pi}_s \equiv \int_{-\infty}^{\infty} d^3v \ m_s \left(\vec{v}_r \vec{v}_r - \frac{1}{3} \vec{v}_r^2 \ I \right) f_s$$

$$T_s \equiv \frac{1}{n_s} \int_{-\infty}^{\infty} d^3v \ \frac{1}{3} m_s \vec{v}_r^2 f_s = \frac{1}{2} m_s v_{Ts}^2$$ \quad and \quad $\vec{R}_s \equiv \int_{-\infty}^{\infty} d^3v \ m_s \vec{v} C(f_s)$

here $\vec{v}_r \equiv \vec{v} - \vec{V}_s$
A KBC from positive-exponent moments

- Putting the 1-D continuity equation
 \[n_s \frac{dV_{z,s}}{dz} + V_{z,s} \frac{dn_s}{dz} = 0 \]
 into the sheath condition gives
 \[\sum_s q_s n_s \frac{dV_{z,s}}{dz} \bigg|_{z=0} \leq 0 \]

- Solving \(dV_{z,s}/dz \) from the momentum balance
 \[m_s n_s V_{z,s} \frac{dV_{z,s}}{dz} = n_s q_s E - \frac{dp_s}{dz} - \frac{d\Pi_{zz,s}}{dz} + R_{z,s} \]
 and putting it in above gives a Bohm criterion
 \[\sum_s q_s \left[q_s n_s - \left(n_s \frac{dT_s}{dz} + \frac{d\Pi_{zz,s}}{dz} - R_{z,s} \right) / E \right] \leq 0 \]

- At sheath edge: \((...) / E \sim \lambda_{De} / \lambda_i \ll q_s n_s \), so:
 \[\sum_i \frac{q_i^2}{e^2 n_e V_{z,i}^2} \frac{c_{s,i}^2}{V_{z,i}^2 - v_{T,i}^2 / 2} \bigg|_{z=0} \leq 1 \]
If f_i has no slow particles, get same criterion

- **Example 1: consider Bohm’s approximation**
 - Monoenergetic ions:
 \[f_i = n_i \delta(\vec{v} - \vec{V}_i) \]
 - Maxwellian electrons
 \[f_e = \frac{n_e}{\pi^{3/2}v_{Te}^3} \exp\left(-\frac{v^2}{v_{Te}^2}\right) \]

- In this case, both theories give: \[V_i \geq c_s = \sqrt{\frac{T_e}{M_i}} \]

- The conventional KBC works in this case because
 \[f_i(v_z = 0) = 0 \]
 and
 \[\left. \frac{\partial f_e}{\partial v_z} \right|_{v_z=0} = 0 \]
 at the sheath edge

- If these conditions are not met, the conventional KBC has divergent integrals
Some ionization sources are conveniently chosen

- Example 2: Tonks-Langmuir plasma: collisionless ions with ionization
- Recall that conventional KBC assumes $C(f_s)|_{v_z=0} = 0$, or $S_i|_{v_z=0} = 0$
- Emmert source function has a “flux” form:
 \[S_i = h(z) \frac{v_z}{v_{Ti}^2} \exp\left(-\frac{v_z^2}{v_{Ti}^2}\right) \]
- Conveniently chosen so $S_i(v_z = 0) = 0$
- Then $f_i(v_z = 0) = 0$ @ sheath edge, and the conventional KBC is satisfied

A Maxwellian source function seems more physical

- It is the background neutrals that are ionized
- These are in thermal equilibrium – Maxwellian
- Source should also be Maxwellian
Conventional KBC diverges for a Maxwellian source

- Bissell and Johnson, Phys. Fluids (1987) used a Maxwellian:
 \[S_i = \frac{h(z)}{v_T} \exp(-v_z^2/v_T^2) \]
- Thus, \(S_i/v_z |_{v_z=0} \to \infty \)
- Sheridan, Phys. Plasmas (2001) showed with simulations that \(f_i(v_z = 0) \neq 0 \) @ sheath edge
- Since \(f_i(v_z = 0) \neq 0 \), the conventional KBC diverges
- New KBC gives \(V_i \gtrsim c_s \)
- No divergences in the positive-exponent velocity moments
 Sheridan’s simulation data shows IVDF for different source temps →
LIF measurements show 3 regions in the presheath

(a) Maxwellian in the bulk plasma and entrance to presheath (collisional)

(b) A 2-step distribution in the mid presheath (collisionless)

(c) Maxwellian at the presheath exit and in sheath (collisional)

- Conventional KBC gives $\infty \leq n_e/T_e$, new KBC gives $V_i \geq c_s$

Why are ions collisional near the sheath edge?

- The ion-ion collision frequency is proportional to $1/\bar{v}^3$:
 \[
 \nu_{i-i}^{LB} = \frac{2\pi n_i q_i^4}{m_i^2 \bar{v}^3} \ln \Lambda
 \]

- Collision length $\propto \bar{v}^4$: $\lambda_{i}^{i-i} \approx \bar{v}/\nu_{i}^{i-i} \propto \bar{v}^4$

 Consider the plasma parameters of Claire et al.:
 $\text{Ar}^+, T_i = 0.027 \text{ eV}, T_e = 2.5 \text{ eV}, n_e = 5.5 \times 10^9 \text{ cm}^{-3}, p_n = 1.8 \times 10^{-4} \text{ mbar}$

- For these: $\lambda_{i}^{i-i} \approx 1.8 \times 10^{-13} \bar{v}^4 \text{ cm}$

- Bulk plasma: $\bar{v} \approx v_{Ti} \approx 3.4 \times 10^2 \text{ m/s} \Rightarrow \lambda_{i}^{i-i} \approx 2.4 \text{ mm}$

- Presheath: $\bar{v} \approx V_i$, so near sheath $\bar{v} \approx c_s = 2.4 \times 10^3 \text{ m/s} \Rightarrow \lambda_{i}^{i-i} \approx 6.0 \text{ m}$

- Presheath length $\approx \lambda_{i-n}^{i-n} \approx 23 \text{ cm}$

- Somewhere in presheath ions become collisionless: $\lambda_{i}^{i-i} \lesssim \lambda_{i-n}^{i-n}$

- Expect Maxwellian in entrance to presheath, but 2-step as the sheath is approached – like simulations, but not what is measured
Kinetic theory includes linear instabilities in $C(f)$

- The kinetic equation $\frac{df_s}{dt} = \sum_{s'} C(f_s, f_{s'})$
 has a collision operator of the Landau form:

 $$ C(f_s, f_{s'}) = -\frac{\partial}{\partial \vec{v}} \cdot \int d^3v' \leftrightarrow Q(\vec{v}, \vec{v}') \cdot \left(\frac{1}{m_s} \frac{\partial}{\partial \vec{v}'} - \frac{1}{m_s} \frac{\partial}{\partial \vec{v}} \right) f_s(\vec{v}) f_{s'}(\vec{v}') $$

- The collisional kernel is the sum of two terms: $\leftrightarrow Q = \leftrightarrow Q_{LB} + \leftrightarrow Q_{IE}$

 Lenard-Balescu term describes stable Coulomb interactions

 $$ \leftrightarrow Q_{LB} = \frac{2q_s^2 q_{s'}^2}{m_s} \int d^3k \frac{k \cdot \vec{k}}{k^4} |\hat{\varepsilon}(\vec{k}, \vec{k} \cdot \vec{v})|^2 $$

 NEW: Instability-enhancements describe interactions with fluctuations

 $$ \leftrightarrow Q_{IE} = \frac{2q_s^2 q_{s'}^2}{m_s} \int d^3k \frac{\vec{k} \cdot \vec{k}}{k^4} \sum_j \gamma_j e^{2\gamma_j t} $$

 $$ \omega_{R,j} is the real part and \gamma_j the imaginary part of the j^{th} unstable mode

 $$ \hat{\varepsilon}(\vec{k}, \omega) = 1 + \frac{4\pi}{k^2} \sum_s q_s^2 \int d^3v \frac{\vec{k} \cdot \partial f_s(\vec{v})/\partial \vec{v}}{\omega - \vec{k} \cdot \vec{v}} $$

 is the plasma dielectric function

 Baalrud, Hegna, Callen, POP (2008) and (2010)
Discrete particles are the source of fluctuations

- The theory is similar to quasilinear theory

\[
\frac{df_s}{dt} = \frac{\partial}{\partial \vec{v}} \cdot \mathcal{D}_v \cdot \frac{\partial f_s}{\partial \vec{v}}
\]

where the velocity-space diffusion coefficient is

\[
\mathcal{D}_v = \frac{q_s^2}{m_s^2} 8\pi \sum_j \int d^3k \frac{\vec{k} \cdot \vec{v}}{k^4} \frac{\gamma_j \mathcal{E}_j(\vec{k})}{(\omega_{R,j}^2 - \vec{k} \cdot \vec{v})^2 + \gamma_j^2}
\]

and the spectral energy density is

\[
\mathcal{E}_j^{ql}(\vec{k}) = \frac{|\delta \hat{E}(\vec{k}, t = 0)|^2 e^{2\gamma_j t}}{(2\pi)^3 V} \frac{\gamma_j}{8\pi}
\]

- BUT...the discrete particle source of fluctuations self consistently determines \(\mathcal{E} \) in the new kinetic theory

\[
\mathcal{E}_j^{\text{kin}}(\vec{k}) = \sum_{s'} \frac{q_{s'}^2}{4\pi^2 |\partial \hat{\varepsilon} / \partial \omega|^2_{\omega_j}} \int d^3v' \frac{f_{s'}(v') e^{2\gamma_j t}}{(\omega_{R,j} - \vec{k} \cdot \vec{v}')^2 + \gamma_j^2}
\]

- In conventional quasilinear theory the spectral energy density \(\mathcal{E}(\vec{k}) \) is an input – it must be determined external to the theory
- Kinetic theory can also describe component collisions \(C(f_s, f_{s'}) \)
- As long as \(\gamma / \omega_R \ll 1 \), the unique equilibrium is Maxwellian
Ion-acoustic instabilities can enhance collisions

- Microinstabilities lead to enhanced collisions [Baalrud, Hegna, Callen POP (2008), (2010)]

\[
\nu_{IE}^{s-s'} \approx \frac{2 n_s q_s^2 q_s^2}{m_s^2 \bar{v}^2} \int d^3k \frac{\bar{k} k}{k^4} \gamma \exp(2 \gamma t) \frac{[\omega_R - \bar{k} \cdot \bar{v} + \gamma^2][\omega_R - \bar{k} \cdot \bar{v}'] + \gamma^2]}{[\omega_R - \bar{k} \cdot \bar{v}] + \gamma^2}] |\partial \hat{\epsilon}(\bar{k}, \omega)/\partial \omega|_{\omega_R}^2
\]

- As long as \(\gamma/\omega_R \ll 1 \Rightarrow \) enhanced collisions lead to unique Maxwellian distributions

- The ion-acoustic dispersion relation is

\[
\omega_{\pm} = \left(\bar{k} \cdot \bar{V}_i \pm \sqrt{\frac{n_i}{n_e}} \frac{kc_s}{\sqrt{1 + k^2 \lambda_{De}^2}} \right) \left(1 \pm i \sqrt{\frac{n_i}{n_e}} \frac{\sqrt{\pi m_e/8M_i}}{(1 + k^2 \lambda_{De}^2)^{3/2}} \right)
\]

- For the ion-acoustic instability, the enhanced scattering frequency is

\[
\nu_{IE}^{s-s} \approx \frac{\nu_{LB}^{s-s} 1 + \kappa_c^2}{8 \ln \Lambda (1 + \kappa_c^2)^2} \exp \left(\sqrt{\frac{\pi m_e n_i}{16M_i n_e \lambda_{De}}} Z \right)
\]

Here \(Z = 0 \) is at the presheath-bulk boundary and

\[
\kappa_c \equiv \begin{cases}
\sqrt{c_s^2/V_i^2 - 1}, & \text{for } V_i \leq c_s \\
0, & \text{for } V_i \geq c_s
\end{cases}
\]
Consideration of IE collisions predicts the 3 regions
Part II: Two ion species

- For 2 species, the Bohm criterion admits an infinite number of solutions

\[
\frac{n_1 c_{s,1}^2}{n_e V_1^2} + \frac{n_2 c_{s,2}^2}{n_e V_2^2} = 1 \quad (\text{for } T_i/T_e \ll 1)
\]

- What is the second condition needed to uniquely determine \(V_1\) and \(V_2\)?

- If ions are collisionless \(V_i = \sqrt{2e|\phi_{ps}|/M_i}\), thus \(V_1/V_2 = \sqrt{M_2/M_1}\)

- Putting this into the Bohm criterion gives:

 “Individual” sound speed: \(V_i = c_{s,i} = \sqrt{\frac{T_e}{M_i}}\)

- Franklin (J. Phys. D: Appl. Phys. 33, 3186 (2000)) has also accounted for ion-neutral collisions
 - Typically don’t significantly modify speeds at the sheath edge (more drag ⇒ more \(E\))
 - Only if the ion-neutral collision frequencies are very different for each species do significant deviations from the individual sound speed occur
 - This is rare for the noble gases typical of LTP experiments
 - Ion-ion collisions are assumed weak (and are if the plasma is stable)
Experiments do not agree with previous theory

- Experiments measure a near common speed

 “System” sound speed: \(V_i = c_s = \sqrt{\sum_i \frac{n_i}{n_e} c_{s,i}^2} \)

- Cold ion temperature regime: \(T_e/T_i \sim 50 \)
- Speeds may differ from common by \(O(v_{Ti}) \)

Experiments hint at importance of ion-ion friction

- However, ion-ion friction is weak if the plasma is stable
- Recall, the collisional friction is
 \[
 \vec{R}^{s/s'} = \int d^3 \vec{v} \; m_s \vec{v} C(f_s, f_s') = \vec{R}_{LB}^{s/s'} + \vec{R}_{IE}^{s/s'}
 \]
- For Maxwellian ions with \(T_s = T_s' \) stable plasma contribution is
 \[
 \vec{R}_{LB}^{s/s'} = -\frac{\sqrt{\pi}}{2} n_s m_s \nu_s \frac{\bar{v}_T^3 \Delta \vec{V}}{\Delta V^4} \psi \left(\frac{\Delta V^2}{\bar{v}_T^2} \right)
 \]
 in which \(\Delta \vec{V} \equiv \vec{V}_s - \vec{V}_s' \) is the relative flow speed, \(\bar{v}_T^2 \equiv v_{Ts}^2 + v_{Ts'}^2 \),
 \[
 \psi(x) = 2/\sqrt{\pi} \int_0^x dt \; \sqrt{t} e^{-t}
 \]
is the Maxwell integral, and a reference collision frequency is
 \[
 \nu_s \equiv \frac{8\sqrt{\pi} q_s^2 q_s'^2 n_s' \ln \Lambda}{m_s^2 v_{Ts}^2 \bar{v}_T}
 \]
- For typical low-temperature plasmas (this one in particular):
 \(R_{LB}^{1-2} \approx 10 \times \) smaller than other term in momentum balance
- Need \(R_{IE}^{1-2} / R_{LB}^{1-2} \gtrsim 10 \) for instability-enhanced friction to matter
Two-stream instabilities in the cold ion limit

- Approximate dispersion relation for ion-ion two-stream instabilities:

\[\omega = \vec{k} \cdot \left(\frac{n_2 c_s^2}{n_e c_s^2} \vec{V}_1 + \frac{n_1 c_s^2}{n_e c_s^2} \vec{V}_2 \right) + i \frac{\vec{k} \cdot \Delta \vec{V}}{1 + \alpha} \sqrt{1 - \frac{(\vec{k} \cdot \Delta \vec{V})^2}{k^2 \Delta V_{up}^2}} \left(1 + k^2 \lambda_{De}^2 \right) \]

where \(\alpha = \sqrt{n_1 M_2 / (n_2 M_1)} \) and \(\Delta V_{up}^2 = c_s^2 \left[1 + \sqrt{1 + 32 \alpha / (1 + \alpha)^2}\right] \) (decoupling of ion beams)

- Plot shows numerical (solid), quadratic (dashed), approximate (dotted)
Two-stream instabilities enhance ion-ion friction

- Calculate the instability-enhanced collisional friction: \(\vec{R}_{1E}^{s-s'} \)
- Assume \(v_T \ll c_s \sim V_s \), and flowing Maxwellian ion distributions
- Friction due to instability-enhanced interactions:

\[
\vec{R}_{1E}^{1-2} \simeq n_1 m_1 \nu_{12} \Delta \vec{V} \exp \left(\frac{\sqrt{\alpha} A}{(1 + \alpha)} \frac{\Delta V^2}{v_g \Delta V_{up} \lambda_{De}} \frac{z}{\nu_{12}} \right)
\]

in which \(A = \Delta V_{up}^2 / \Delta V^2 - 1 \),

\[
\nu_{12} = \nu_s \frac{3}{160 \sqrt{\pi}} \frac{\bar{v}_T \Delta V^4}{\Delta V_{up} c_s^4} \frac{A^{7/2}}{4 + A^{3/2}} \frac{\alpha^{5/2}(1 + \alpha^{1/3})^2}{\alpha^2 - 1}
\]

is a characteristic frequency, and

\[
v_g = \frac{n_2 c_{s2}^2 V_1 + n_1 c_{s1}^2 V_2}{n_e c_s^2}
\]

is the group speed of the waves
Two-stream instabilities ⇒ rapid/strong friction

- Get $10 \times$ enhancement within approximately $z/\lambda_{De} = 5$
- Presheath length: $l \sim 10^3 \lambda_{De} \gg$ growth length for \vec{R}_{IE}^{1-2} to dominate
- Very stiff system! Friction is huge if unstable
Need to account for finite T_i

- So far, assumed $T_i = 0$ in which case instability for $V_1 - V_2 = \Delta V \geq 0$
- Using $V_1 - V_2 = 0$ in the Bohm criterion gives system sound speed

 \[V_1 = V_2 = \sqrt{\frac{n_1}{n_e} c^2_{s,1} + \frac{n_2}{n_e} c^2_{s,2}} = c_s \]

- This agrees with previous measurements [within $O(v_{Ti})$], but ions were room temperature (cold)
- Finite T_i gives stabilization for $\Delta V \leq \Delta V_c = O(v_{Ti})$ – important!
- ΔV_c is determined from the dielectric function (assume Maxwellians)

\[
1 + k^2 \chi^2_{De} = \frac{1}{2} \frac{n_1 T_e}{n_e T_1} Z' \left(\frac{k \cdot \Delta \vec{V} (\Omega - 1/2)}{k v_{T_1}} \right) + \frac{1}{2} \frac{n_2 T_e}{n_e T_2} Z' \left(\frac{k \cdot \Delta \vec{V} (\Omega + 1/2)}{k v_{T_2}} \right)
\]

where Z is the plasma dispersion function

[here Ω is defined by $\omega = \frac{1}{2} \vec{k} \cdot (\vec{V}_1 + \vec{V}_2) + \vec{k} \cdot \Delta \vec{V} \Omega$]

- We will find that ΔV_c depends on relative concentrations (n_1/n_e) too
- This will provide a convenient way to test the theory experimentally
A fluid approximation for ΔV_c

- If $v_{T1}/v_{T2} \gg 1$ or $v_{T1}/v_{T2} \ll 1$ the PDFs are separated ($\Omega_o = \Omega \pm 1/2$)

In this case, the fluid limit of Z' is a good approximation

$$\hat{\epsilon} = 1 + \frac{1}{k^2 \lambda_{De}^2} - \frac{\omega_{p1}^2}{(\omega - \vec{k} \cdot \vec{V}_1)^2 - k^2 v_{T1}^2 / 2} - \frac{\omega_{p2}^2}{(\omega - \vec{k} \cdot \vec{V}_2)^2 - k^2 v_{T2}^2 / 2}$$

which gives the instability criterion $\Delta V > (k/k_{||})\Delta V_c^{fl}$ where

$$\Delta V_c^{fl} = \sqrt{\frac{1 + \alpha}{2\alpha}} \sqrt{v_{T1}^2 + \alpha v_{T2}^2} \quad \text{in which} \quad \alpha \equiv \frac{n_1 M_2}{n_2 M_1}$$
A kinetic approximation for ΔV_c

- For $v_{T1}/v_{T2} \sim 1$, the PDFs overlap a lot ($\Omega_o = \Omega \pm 1/2$)

- In this case, expanding $Z'(w)$ about $w = \pm 3/2$ is more reasonable
- Doing so leads to the instability criterion $\Delta V > (k/k_{\parallel})\Delta V_{c}^{\text{kin}}$ where

$$\Delta V_{c}^{\text{kin}} = -\frac{3}{2}|v_{T2} - v_{T1}| + \sqrt{\frac{1}{2} \left(1 + \frac{n_2 T_1}{n_1 T_2} \right)} \left(v_{T1}^2 + \frac{n_1 T_2}{n_2 T_1} v_{T2}^2 \right)$$
Ion-ion friction can determine the Bohm criterion

- If $\Delta V_c > |c_{s1} - c_{s2}|$, no instabilities are expected and Franklin’s solution of individual sound speeds should hold.

- A condition relating the flow speed of each species is then

$$V_1 - V_2 = \Delta V_c \equiv \begin{cases} \Delta V^\text{fl}_c, & \text{or } \Delta V^\text{kin}_c \text{ if } \leq |c_{s1} - c_{s2}| \\ c_{s1} - c_{s2} & \text{if } > |c_{s1} - c_{s2}| \end{cases}$$

- Use ΔV^fl_c for $v_{T1}/v_{T2} \gtrsim 4$ or $\lesssim 1/4$ and ΔV^kin_c for $1/4 \gtrsim v_{T1}/v_{T2} \gtrsim 4$

- Putting $\Delta V = \Delta V_c$ into the Bohm criterion gives

$$\frac{n_1 c^2_{s1}}{n_e V_1^2} + \frac{n_2 c^2_{s2}}{n_e (V_1 - \Delta V_c)^2} = 1,$$

which is a quartic equation to solve for V_1 [only one positive real solution]

- If $\Delta V_c \ll |c_{s1} - c_{s2}|$ a handy approximate expression is

$$V_1 \simeq c_s + \frac{n_2 c^2_{s2}}{n_e c^2_s} \Delta V_c \quad \text{and} \quad V_2 \simeq c_s - \frac{n_1 c^2_{s1}}{n_e c^2_s} \Delta V_c$$

- Speeds differ from c_s by an amount $\mathcal{O}(v_{Ti})$
Preasheath can be collisional near the sheath

- If instability-enhanced friction is present, the presheath has two regions
- ΔV is “locked” in the unstable region – seen in measurements

\[V_1 = c_s + \frac{n_2}{n_e} c_s^2 \Delta V_c \]
\[V_2 = c_s - \frac{n_1}{n_e} c_s^2 \Delta V_c \]
Ar\(^{+}\)-Xe\(^{+}\) data agrees with ΔV_c^{kin} predictions

- Data from Yip, Hershkowitz, Severn, PRL 104, 225003 (2010)
- $T_e = 0.7$ eV, $T_1 \approx T_2 = 0.04$ eV, 1 labels Ar\(^{+}\), 2 labels Xe\(^{+}\)
- Since $v_{T_1}/v_{T_2} = 1.8 \sim 1$, use $\Delta V_c = \Delta V_c^{\text{kin}}$
- Solid lines show full solution of quartic, dashed the handy formula
He\(^+\)-Xe\(^+\) data agrees with \(\Delta V^\text{fl}_c\) predictions

- Data from Hershkowitz, Yip, Severn, POP (in press).
- \(T_e = 1 \text{ eV}, T_1 = 0.07, T_2 = 0.04 \text{ eV}, 1\) labels He\(^+\), 2 labels Xe\(^+\)
- Since \(v_{T2}/v_{T1} \approx 6\), use \(\Delta V_c = \Delta V^\text{fl}_c\)
- Solid lines show full solution of quartic, dashed the handy formula
Why don’t I see IE collisions in my PIC simulations?

• **Thing 1:** Need to have a Coulomb collision routine in the code
 - Many LTP PIC simulations don’t include a Coulomb collision routine
 - This can be done using Monte Carlo techniques (typically used for ion-neutral)

• To get Coulomb collisions “self consistently” would need
 1. Grid resolution of interparticle distance (so macro-fields on the grid resolve single particle fields)
 2. A macroparticle density that satisfies \(n\lambda_D^3 \) = experiment value (so the collective effects of screening are accounted for)

• Of course, these cannot be satisfied (so PIC uses MCC routines)

• **Thing 2:** Probably need a modified cross section for IE collisions
 - Use Rutherford scattering cross section in stable plasma – \(\delta \phi \propto 1/r \)
 - The field around single particles is modified by collective effects (instabilities)

• To get IE collisions “self consistently” (even with a Coulomb MCC routine from Rutherford X-section) would require
 1. Grid resolution much shorter than wavelength \((k \sim 1/\lambda_D \text{ here}) \)
 2. A macroparticle density that satisfies \(n\lambda_D^3 \) = experiment value

• (2) is particularly restrictive (and important) for IE collisions
Conclusions

• Use the kinetic (generalized) Bohm criterion with caution
 – It does not work for an arbitrary distribution function [it effectively assumes \(f_i(v_z = 0) = 0 \) and \(\partial f_e/\partial v_z|_{v_z=0} = 0 \)]
 – Don’t put your LIF data into it (you will get divergent integrals)
 – It places unphysical importance on low velocity particles

• Instead, use criterion from positive exponent velocity moments of PKE

• Ion-acoustic instabilities can be important for determining the IVDF and EVDF near the sheath of low temperature plasmas

• In two ion species plasmas, ion-ion two stream instabilities can be important
 – Since IE friction onset is so rapid and strong the system is very stiff
 – The difference in flow speeds can’t exceed the instability threshold \(V_1 - V_2 = \Delta V_c \)
 – \(V_1 - V_2 = \Delta V_c \) and the BC uniquely determines \(V_1 \) and \(V_2 \)
 – If ions are warm enough that \(\Delta V_c > |c_{s,1} - c_{s,2}| \), then no instabilities are expected and the usual \(V_1 - V_2 = |c_{s,1} - c_{s,2}| \) is appropriate