Multiphysics Modeling of Ambient Gas Plasma-Based Wound Healing Process

Yuki Sakiyama, Marat Orazov, and David Graves

Department of Chemical and Biomolecular Engineering
University of California at Berkeley
Outline

1. Introduction
 • overview of gas plasma-based wound healing
 • importance of ROS/RNS
 • our strategy

2. Modeling of Surface DBD
 • model description
 • plasma-generated ROS/RNS

3. Modeling of wound healing
 • model description
 • possible effects from gas plasma

4. Concluding remarks
Introduction: wound healing process

R. A. Bryant, et al., *Acute and Chronic Wounds* (Mosby, Missouri, 2006).

Inflammatory phase
- ~48 hours
- bacteria sterilization/debris removal
- blood coagulation

Proliferative phase
- 2~10 days
- blood vessels generation
- collagen deposition from fibroblasts

Remodeling phase
- 1 year
- tissue reorganization/realignment
- apoptosis of unnecessary cells
Introduction: known effects of gas plasmas

R. A. Bryant, et al., Acute and Chronic Wounds (Mosby, Missouri, 2006).

Inflammatory phase
- ~48 hours
- bacteria sterilization/debris removal
- blood coagulation

Proliferative phase
- 2~10 days
- blood vessels generation
- collagen deposition from fibroblasts

Remodeling phase
- 1 year
- tissue reorganization/realignment
- apoptosis of unnecessary cells
Introduction: ongoing projects

- **Plasma health care project**
- lead by G. Morfill at Max-Planck Institute
- 19 PhDs, 11 MDs
- Germany, UK, Russia, Japan, USA

Phase-I clinical study

Microwave Ar plasma torch

Before treatment
After 11 treatments
SMD (surface micro-discharge)

- Power density: 0.1-1.0 W/cm2
- Voltage: 10-20 kV$_{pk-pk}$
- Frequency: 1-10 kHz

Plasma dynamics/chemistry
Mass transportation

Plasma-biomaterial interaction

Mechano-chemical model of cell/tissue/system
Outline

1. Introduction
 • overview of gas plasma-based wound healing
 • importance of ROS/RNS
 • our strategy

2. Modeling of Surface DBD
 • model description
 • plasma-generated ROS/RNS

3. Modeling of wound healing
 • model description
 • possible effects from gas plasma

4. Concluding remarks
For charged particles: \(\Gamma_{pg} = 0 \)

For neutrals:
\[
\Gamma_{pg} = \frac{D_{gas} (n_{pls} - n_{gas})}{d_{gas}}
\]
SDBD: model description (2)

Computational domain

$\begin{align*}
\text{SMD} & \quad \text{Neutral reactor} \\
\text{zero flux} & \quad \text{zero flux}
\end{align*}$

e.g. metal surface with diluted bacteria

$\begin{align*}
\text{SMD} & \quad \text{Neutral reactor} \\
\text{zero flux} & \quad \text{zero flux}
\end{align*}$

Negative particles: e, O$^-$, O$_2^-$, O$_3^-$, O$_4^-$, H$^-$, OH$^-$, NO$^-$, N$_2$O$^-$, NO$_2^-$, NO$_3^-$

Positive particles: N$^+$, N$_2^+$, N$_3^+$, N$_4^+$, O$^+$, O$_2^+$, O$_4^+$, NO$^+$, N$_2$O$^+$, NO$_2^+$, H$^+$, H$_2^+$, H$_3^+$, OH$^+$, H$_2$O$^+$, H$_3$O$^+$

Neutrals: N, N*, N$_2$, N$_2^*$, N$_2^{**}$, O, O*, O$_2$, O$_2^*$, O$_3$, NO, N$_2$O, NO$_2$, NO$_3$, N$_2$O$_5$, H, H$_2$, OH, H$_2$O, HO$_2$, H$_2$O$_2$, HNO, HNO$_2$, HNO$_3$
SDBD: multiple time-scale phenomena

Simulation procedure

- Cycle-averaged reaction rates

SMD (electrons, ions, neutrals)

Neutral reactor (neutrals)

SMD (neutrals)

SMD (electrons, ions, neutrals)

exposure time

gas diffusion

applied voltage period

neutral reactions

electron impact reactions

charge transfer, ion recombination

100 ns

1 ms

1 ms

1 s

100 s
SDBD: dynamics of charged particles

Power density: 0.1 W/cm²
Frequency: 10 kHz
Gap distance: 1 mm
Humidity: 0% (dry)

Positive ions

Negative ions

Neutral

SMD
SDBD: comparison between dry and humid air

Power density: 0.1 W/cm²
Frequency: 10 kHz
Gap distance: 1 mm
Humidity: 0% (dry), 30% (humid)
1. Introduction
 • overview of gas plasma-based wound healing
 • importance of ROS/RNS
 • our strategy

2. Modeling of Surface DBD
 • model description
 • plasma-generated ROS/RNS

3. Modeling of wound healing
 • model description
 • possible effects from gas plasma

4. Concluding remarks
Wound healing: model description

- 6-species PDEs in 1-D Cartesian coordinates
- modified parameters and additional terms for plasma treatment

Major pathways for wound healing

- bacteria
- oxygen
- chemo-attractants
- capillary tips
- fibroblasts
- ECM
Wound healing: governing equations (1)

- **Oxygen**: \(c \)

\[
\frac{\partial c}{\partial t} + \nabla g(-D_c \nabla c) = - \left(\frac{k_1}{1 + k_b e} + k_2 e \right) \frac{c}{k_3 + c} - k_4 b c + k_5 b
\]

consumption by bacteria

- **Chemoattractants**: \(a \)

\[
\frac{\partial a}{\partial t} + \nabla g(-D_a \nabla a) = -k_6 a b - k_7 a + \frac{k_8 H(c - c_L)H(c_H - c)}{1 + e}
\]

production
Wound healing: governing equations (2)

- **Capillary tips:** \(n \)

\[
\frac{\partial n}{\partial t} + \nabla g(-D_n \nabla n) = \nabla g\left(\frac{-\kappa_n en}{(1 + e^2)(1 + a)^2} \nabla a\right) + a(k_9 b + k_{10} n) - n(k_{11} n + k_{12} b)
\]

- **Fibroblasts:** \(f \)

\[
\frac{\partial f}{\partial t} + \nabla g(-D_f \nabla f) = \nabla g\left(\frac{-\kappa_f f}{(1 + a)^2} \nabla a\right) + \frac{k_{16} f c}{1 + c} - \frac{k_{17} f^2}{(1 + c)(1 + e)}
\]

- **Chemotaxis**

- **Oxygen**

- **Chemotactants**

- **Capillary tips**

- **Blood vessels**

- **Fibroblasts**

- **ECM**
Wound healing: governing equations (3)

- **Blood vessels:** \(b \)
 \[
 \frac{\partial b}{\partial t} = - \frac{\kappa_n e n}{(1 + e^2)(1 + a)^2} \nabla a + k_{13} b (k_{14} e + k_{15} f - b)
 \]
 production by capillary tips

- **ECM:** \(e \)
 \[
 \frac{\partial e}{\partial t} = k_{18} f c (k_{19} c - e)
 \]
 deposition
Wound healing: untreated wound

$t = 0.0$ [week]
Wound healing: effects of gas plasmas

Twice/day plasma treatment
- 99% direct reduction (R)
- 90 min doubling time (k_p)

Time dependent bacterial load

Oxygen: c

\[
\frac{\partial c}{\partial t} + \nabla g(-D_c \nabla c) = - \left(\frac{k_1}{1 + k_b e^{P_n}} + k_2 e^{P_n} \right) \frac{c}{k_3 + c} - k_4 b c + k_5 b
\]

\[
P_n = \frac{R P_{n-1} \exp(k_p t)}{1 + R P_{n-1} \{\exp(k_p t) - 1\}}
\]
Wound healing: possible effects of gas plasmas

direct effect (short-term)
M. Pavlovich. (in preparation)

> 2-log reduction (99%)

indirect effect (long-term)

Inhibition of growth
(~90min doubling time)

![Graph showing bacterial density vs. post-irradiation incubation time]

- Control
- Plasma
Wound healing: plasmas treatment

- Oxygen
- Chemoattractants
- Capillary tips
- Blood vessels
- Fibroblasts
- ECM

$t = 0.0$ [week]
Wound healing: healing speed

Plasma-based wound treatment
• 99% direct reduction
• 90 min doubling time
Outline

1. Introduction
 • overview of gas plasma-based wound healing
 • importance of ROS/RNS
 • our strategy

2. Modeling of Surface DBD
 • model description
 • plasma-generated ROS/RNS

3. Modeling of wound healing
 • model description
 • possible effects from gas plasma

4. Concluding remarks
Concluding Remarks

1. Multi-species and multi-time step global model was developed for SMD. Our model shows that significant amount of bactericidal ROS/RNS are generated in SMD.

2. 6 species plasma-based wound healing model was developed based on Flegg’s model. Our model suggests that wound sterilization is a key mechanism of wound treatment by gas plasmas.
Acknowledgements

DOE OFS: Plasma Science Center

Prof. G. Morfill and the team plasma health care (Max-Planck Institute, Germany)
Prof. D. Clark (UC Berkeley, USA)
Dr. M. Traylor (former postdoc at Graves group)
M. Pavlovich, S. Karim, and H. Pritha (Graves group)

Reviews for plasma medicine