Review

Plasma–liquid interactions: a review and roadmap

1 Department of Mechanical Engineering, University of Minnesota, 111 Church Street SE, Minneapolis, MN 55455, USA
2 Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Ave, Ann Arbor, MI 48109-2122, USA
3 Department of Chemical and Biomedical Engineering, Florida State University, 2525 Pottsdamer Street, Tallahassee, FL 32309, USA
4 Mesoscale Chemical Systems, MESA +, Institute for Nanotechnology, University of Twente, PO Box 217, 7500AE Enschede, The Netherlands
5 Mathematics and Physics, Queen’s University Belfast, University Road, Belfast, BT7 1NN, UK
6 Chemical and Biomolecular Engineering, University of California—Berkeley, 201 Gilman, Berkeley, CA 94720-1460, USA
7 KWR Watercycle Research Institute, PO Box 1072, 3430VB Nieuwegein, The Netherlands
8 Institute of Physics, University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia
9 School of Chemistry, University of Bristol, Cantocks Close, Clifton, Bristol, BS8 1TS, UK
10 Dipartimento di Scienze Chimiche, Università degli Studi di Padova, Via Marzolo, I 35131 Padova, Italy
11 Nuclear Engineering and Radiological Sciences, University of Michigan, 2355 Bonisteel Blvd, Ann Arbor, MI 48109-2104, USA
12 Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK
13 Center for Atomic and Molecular Physics, Osaka University, 2-6 Yamadaoka, Suita, Osaka 565-0871, Japan
14 School of Electronic, Electrical and Systems Engineering, Loughborough University, Epinal Way, Loughborough Leicestershire, LE11 3TU, UK
15 Leibniz Institute for Plasma Science and Technology, INP Greifswald, Felix Hausdorff-Str. 2, 17489, Greifswald, Germany
16 Faculty of Chemistry, Brno University of Technology, Purkynova 118, 61200 Brno, Czech Republic
17 Pulse Plasma Systems Department, Institute of Plasma Physics CAS, v.v.i., Za Slovankou 1782-3, Prague 8, 182 00, Czech Republic
18 Faculty of Mathematics, Physics and Informatics, Comenius University, Mlynska dolina, 842 48 Bratislava, Slovakia
19 Laboratoire de Physique des Plasmas, Ecole Polytechnique, route de Saclay, F-91128, Palaiseau, Cedex, France
20 Nanotechnology and Integrated Bioengineering Centre (NIBEC), University of Ulster, Newtownabbey BT37 0QB, UK
21 Department of Chemical and Biomolecular Engineering, Clarkson University, PO Box 5705, Potsdam, NY 13699-5705, USA
22 Department of Civil and Environmental Engineering, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA
23 Department of Chemistry, Research Group PLASMANT, University of Antwerp, Universiteitsplein1, BE-2610 Antwerp-Wilrijk, Belgium

doi:10.1088/0963-0252/25/5/053002
Abstract
Plasma–liquid interactions represent a growing interdisciplinary area of research involving plasma science, fluid dynamics, heat and mass transfer, photolysis, multiphase chemistry and aerosol science. This review provides an assessment of the state-of-the-art of this multidisciplinary area and identifies the key research challenges. The developments in diagnostics, modeling and further extensions of cross section and reaction rate databases that are necessary to address these challenges are discussed. The review focusses on non-equilibrium plasmas.

Keywords: non-equilibrium plasma, plasma–liquid interaction, diagnostics, modeling, reaction rate data sets, multiphase chemistry, photolysis

(Some figures may appear in colour only in the online journal)

1. Introduction

Plasma–liquid interactions are becoming an increasingly important topic in the field of plasma science and technology. The interaction of non-equilibrium plasmas with a liquid state is important in many applications ranging from environmental remediation to material science and health care. Cavendish’s famous work ‘experiments on air’ from 1785 might be the first report involving plasma–liquid interaction and dealt with the production of nitric acid by an electric spark in air [1]. Experiments dealing with the interaction of plasmas and liquids in the context of electrochemistry date back more than 100 years ago [2]. Up to about 30 years ago, the main focus in the field of plasmas in and in contact with liquids was on glow discharge electrolysis [3] and the study of breakdown of dielectric liquids for high-voltage switching [4]. These works were followed by a strong emphasis on environmental driven research exploiting the fact that plasmas in and in contact with liquids are rich sources of reactive species, such as •OH, •O and H2O2, and UV radiation [5]. Plasmas are, in fact, a form of advanced oxidation technology enabling the breakdown of organic and inorganic compounds in water [6]. Many studies on microsecond pulsed discharges in water have addressed these topics [7].

The field of analytical chemistry often uses plasma devices to prepare samples or as a sampling process for the analyses of solutions. These techniques are typically based on glow discharges with liquid electrodes [8], inductively coupled plasmas [9] and a variety of corona, dielectric barrier discharges and glow discharges as ionization sources for mass spectrometry [10]. The emphasis in these uses of plasmas is typically not to intentionally transfer reactivity from the plasma into the liquid for the purposes of making a more reactive liquid. The plasma community has greatly benefited from this work. The topics addressed in this manuscript build on this knowledge base produced by the analytical chemistry community. However, the focus here is on plasma–liquid interactions and particularly on the physical and chemical mechanisms leading to complex feedback between the plasma and liquid at the plasma–liquid interface resulting in reactivity in the liquid.

During the last 15 years, the focus of research on the interactions of plasmas with liquids has broadened to address a variety of application areas, including electrical switching [4], analytical chemistry [8, 10], environmental remediation...
(water treatment and disinfection) [6], material synthesis (nanoparticles) [11], material processing (photoresist removal, plasma-polishing, polymer functionalization) [12, 13], chemical synthesis (H₂O₂, H₂) [14], sterilization and medical applications (plasma induced wound healing, tissue ablation, blood coagulation, lithotripsy) [5, 15]. These exciting opportunities have challenged the plasma community with multidisciplinary scientific questions. In addition to specialized review articles, two broader reviews focusing on the applications and the physics of plasmas in and in contact with liquids, have been published [16, 17].

Plasmas sustained directly in liquids are generated at one extreme by nanosecond pulsed and DC voltages [17], and at the other extreme by AC excitation of 50–60 Hz up to GHz microwave excitation [18]. The operating pressures range from very low values (using ionic liquids) up to very high pressure values in supercritical liquids [19, 20]. Even at atmospheric pressure transient pressures of GPa are produced by plasma filaments generated by pulsed discharges directly in water [21]. There are many reactor geometries having different operating principles, however, these reactors can be sorted into 3 categories:

- Direct discharges in liquids,
- Discharges in the gas phase over a liquid, including when a conductive liquid is an electrode,
- Discharges in multiphase environments such as discharges in bubbles inside liquids or discharges contacting liquid sprays or foams.

Electrical breakdown and ionization in liquids have been investigated for several years. Ionization mechanisms in atomic liquids such as liquid Ar are relatively well understood [22]. This is less the case for complex liquids, particularly polar liquids such as water. Although it is generally thought that electrical breakdown in water occurs through formation of bubbles or in pre-existing voids, some recent results suggest that breakdown can occur without a phase change [23]. Plasmas in liquids have been investigated using imaging and optical emission spectroscopy, techniques that have enabled measuring basic plasma parameters including discharge morphology, gas temperature, electron density, and excitation temperatures. Increasing efforts have recently been devoted to modeling, but there remain many unresolved questions about the properties of plasma interaction with liquids.

Two key challenges in this field were discussed in the Journal of Physics D ‘2012 Plasma Road Map’ [24]: (a) breakdown processes and mechanisms in liquids; and (b) physical and chemical processes occurring at the plasma–liquid interface. The second challenge is particularly multi-disciplinary due to the wide range of chemical species and physical effects which involve radical and reactive species, ions, electrons, (V)UV emission, electric fields, heat and neutral gas flows across the gas–liquid interface. All these individual components are typically studied in distinct fields of research.

On August 4–8, 2014, the workshop ‘Gas/Plasma–Liquid Interface: Transport, Chemistry and Fundamental Data’ was held at the Lorentz Center, University of Leiden in the Netherlands. The workshop brought together scientists from different fields such as aerosol chemistry, chemical engineering, analytical chemistry, advanced oxidation technologies, microfluidics, photolysis, combustion, solvation chemistry and plasma science and technology to identify the needs and current knowledge-base of gas–liquid interface chemistry and plasma liquid-interactions. The key challenges in this field regarding transport, chemistry, the availability (or lack) of fundamental reaction rates and cross sections, and diagnostics were discussed and identified. This review can trace its origins to discussions originally held at that meeting and

Figure 1. Schematic diagram of some of the most important species and mechanisms for an argon/humid air plasma in contact with water. Adapted with permission from [24], copyright 2014 IOP Publishing.
discussions continued by the authors up to the date of submission. Participants of the workshop were given the opportunity to author contributions on topics discussed at the workshop. These contributions were incorporated into sections by the first 9 authors of this manuscript. The final editing was performed by a subgroup of these 9 authors.

The goals of this review are to provide the reader with:

• An update on the state of the art in the field of non-equilibrium plasma–liquid interactions;
• An introductory description of the strongly multidisciplinary topics within the field;
• A compilation of key databases and publications;
• Identifying the key challenges in the field;
• A summary of the necessary advances in diagnostics and models required to address these key challenges;
• The critical needs of data for experimentalists and modelers;
• Guidelines on possible reference experiments, modeling and diagnostics.

The complex processes of plasmas contacting liquid water that need to be considered are shown in figure 1 for the specific example of an argon-air plasma although many other gas mixtures are important. These processes include gas phase chemistry, multiphase species transport, mass and heat transfer, interfacial reactions and liquid phase chemistry. A distinction is made between the bulk liquid and the interfacial region, the latter being the location where many important processes involving short-lived species occurs. However, different radicals will have different penetration depths according to their lifetimes, and so the thickness of the interfacial layer can vary for different processes and species.

The focus of this review is on non-equilibrium atmospheric pressure plasmas (plasmas having an average electron energy that is significant higher than the heavy particle energy). Systems in thermal equilibrium are only briefly mentioned. (The use of the term electron temperature, \(T_e \), in the text does not imply equilibrium; rather it aligns with the usual practice to equate \(T_e = (2/3)\epsilon \), where \(\epsilon \) is the average energy.) This review begins with an outline of the typical conditions for initiating plasma–liquid interactions. The next sections focus on species transfer at the gas–liquid interface and photo-induced liquid phase chemistry. We then discuss heat and mass transfer processes at the plasma–liquid interface and review the literature on reaction rates and mechanisms relevant for plasma liquid interactions. Before presenting the conclusions and roadmap, the state-of-the-art and current challenges in diagnostics and modeling are discussed.

2. Plasmas interacting with liquids: classification of conditions

2.1. Introduction

Similar to gas-phase plasmas, plasma–liquid systems can be classified based on the method of generation or configurations. However, the type of interactions with liquid is of particular importance to plasma–liquid systems because it highly influences the plasma properties. One such classification scheme is (see also figure 2).

- Direct liquid phase discharges
- Gas phase plasmas producing reactivity in the liquid
 - Without direct contact/electrical coupling with the liquid
 - With direct contact/electrical coupling with the liquid (liquid electrode)
 - At the plasma liquid interphase (surface discharges)
- Multiphase plasmas including
 - Gas phase plasmas with dispersed liquid phase (aerosols)
 - Gas phase plasmas dispersed in the gas phase (bubbles) in liquid

![Figure 2](image-url) Schematic of different discharges used in plasma–liquid interactions: (A) direct discharge in liquid, (B)–(D) gas phase discharges and (E) and (F) multiphase discharges. In more detail: (B) plasma jet without direct contact with liquid, (C) gas phase plasma with liquid electrode, (D) surface discharge, (E) gas phase plasma with dispersed liquid phase (aerosols) and (F) discharges in bubbles. Blue = liquid, pink = plasma, green = dielectric, black = metal electrodes.

![Figure 3](image-url) Schematic of the reaction chemistry in the model of Mededovic and Locke. Reproduced with permission from [38], copyright 2012 Springer.
Table 1. Typical plasma properties for four often used discharges: pulsed direct discharge in liquid, DC air glow discharge with a water electrode, pulsed plasma jet (non-touching) and filamentary dielectric barrier discharge (DBD).

<table>
<thead>
<tr>
<th></th>
<th>Direct liquid discharge [17, 21]</th>
<th>DC air glow discharge [50, 52, 57–59]</th>
<th>Pulsed jet (non-touching) [60, 61]</th>
<th>Filamentary DBD (single filament) [62]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medium/gas</td>
<td>Water</td>
<td>Humid air</td>
<td>He–Ar</td>
<td>Air</td>
</tr>
<tr>
<td>Plasma generation time</td>
<td>1–10 s μs</td>
<td>Continuous</td>
<td>10–100 ns</td>
<td>1–10 ns</td>
</tr>
<tr>
<td>Electron density (m⁻³)</td>
<td>10²⁴–10²⁶</td>
<td>10¹⁸–10¹⁹</td>
<td>10¹⁹–10²⁰</td>
<td>10¹⁹–10²¹</td>
</tr>
<tr>
<td>Pressure (bar)</td>
<td>10¹³ (peak)</td>
<td>1</td>
<td>300–400</td>
<td>10⁻⁵–10⁻⁶</td>
</tr>
<tr>
<td>Gas temperature (K)</td>
<td>1000–7000</td>
<td>2000–3000</td>
<td>10⁻⁵–10⁻⁷</td>
<td>10⁻⁵–10⁻⁶</td>
</tr>
<tr>
<td>Ionization degree</td>
<td>1–10⁻³</td>
<td>10⁻⁵–10⁻⁷</td>
<td>10⁻³–10²</td>
<td>10⁻³–10²</td>
</tr>
<tr>
<td>Energy/power</td>
<td>1 J per pulse</td>
<td>5–100 W</td>
<td><10 µJ per pulse</td>
<td><10 µJ per pulse</td>
</tr>
<tr>
<td>Power density</td>
<td>≤10¹⁵ W m⁻³</td>
<td>~10⁶ W m⁻³</td>
<td><10¹² W m⁻³</td>
<td><10¹² W m⁻³</td>
</tr>
<tr>
<td>Current</td>
<td>~1 A</td>
<td>5–100 mA</td>
<td>2–10 mA peak</td>
<td><100 mA</td>
</tr>
<tr>
<td>Electron temperature (eV)</td>
<td>1 (close to LTE)</td>
<td>1–2</td>
<td>1–2</td>
<td>2–3</td>
</tr>
<tr>
<td>Electric field (kV cm⁻¹)</td>
<td>~10¹⁰</td>
<td>1 (in positive column)</td>
<td>1–10</td>
<td>10–100</td>
</tr>
<tr>
<td>Ion density at interface (m⁻³)</td>
<td>10²⁴</td>
<td>10¹⁵–10¹⁹</td>
<td>≤10¹⁶</td>
<td>10⁻²⁰–10⁻¹⁹</td>
</tr>
<tr>
<td>UV (m⁻² s⁻¹)</td>
<td>Broadband UV emission</td>
<td>Strong UV (NO(A-X), OH(A-X), N₂(C-B))</td>
<td>5 × 10²²</td>
<td>5 × 10²³</td>
</tr>
<tr>
<td>Radical density (e.g. OH and O) (m⁻³ s⁻¹)</td>
<td>~10²⁴</td>
<td>10⁻²¹–10⁻²³</td>
<td>10⁻¹⁹–10⁻¹¹</td>
<td>10⁻²⁰–10⁻¹¹</td>
</tr>
<tr>
<td>Reactive species flux (m⁻³ s⁻¹)</td>
<td>Extremely large gradients</td>
<td>10²²–10²⁵</td>
<td>5 × 10²¹–5 × 10²³</td>
<td>5 × 10²²–5 × 10²³</td>
</tr>
<tr>
<td>Flow effects</td>
<td>Shockwaves</td>
<td>Thermal convection</td>
<td>Forced flow</td>
<td>Convective</td>
</tr>
</tbody>
</table>

Note: These values are estimates as a guide to typical plasma conditions.

While many other classifications can be considered, this scheme stresses the different kinds of interactions of plasmas which in turn emphasize differences in plasma generation and heat, mass and species transport. Although this review is far from exhaustive, it provides insights on the different types of plasmas in and in contact with liquids.

2.2. Direct liquid phase plasmas

Discharges that are generated within a liquid are highly dynamic and transient. Discharges in a liquid typically require a rapid breakdown process, which in most cases is electrically driven by strong electric fields but can also be achieved by sonoluminescent bubble implosions [25] or laser pulses [26]. Non-equilibrium discharges produced directly in the liquid by high voltage pulses are often referred to as streamer or corona discharges. These discharges are often generated by pulsed excitation in pin-to-pin or pin-to-plate configurations (see figure 2(A)). A common excitation method is discharging a capacitor by means of a short-rise-time switch such as a spark gap which produces microsecond pulsed discharges. Recently, by exploiting novel developments in the field of pulsed power there is an increased interest in nanosecond pulsed discharges in liquids [23] using pulse forming lines or solid state high voltage pulse generators.

In-liquid corona discharges are partial discharges—breakdown, a conducting channel between the two metal electrodes, is often not achieved. The continuity of the discharge current is achieved through the liquid in the form of slow ions and displacement current instead of the mobile electrons in the plasma phase. When breakdown does occur and the reduction in impedance enables delivery of power, underwater arc discharges can be formed. Underwater arcs, which are typically thermal plasmas, have been studied in considerable detail [27]. However, their thermal nature places them outside the scope of this review.

There continues to be discussion on how discharges in liquids are generated. The details of the breakdown process depend on the excitation voltages and waveforms and the liquid properties. However, either DC or AC excitation can produce Joule heating and the formation of a vapor phase through which breakdown can occur [17]. It is generally accepted that discharges in liquids generated by microsecond voltage pulses are enabled by pre-existing bubbles or the formation of bubbles by application of the voltage [28]. However, nanosecond discharges are typically too short to form bubbles during the high voltage pulse. To date, no single comprehensive theory describes liquid electrical breakdown on nanosecond time scales although research suggests that pre-existing bubbles and field enhancement effects in the near electrode region are involved [29]. Starikovski et al [23] has observed discharge formation without measurable bubbles by using sub-ns voltage pulses of high enough E/N (electric field/liquid number density) such that electron avalanche can occur in the liquid phase. The research in this area is challenged by practical difficulties such as achieving pure degassed liquids and not being able to measure (sub) micrometer gas voids due to the optical diffraction limit. Pekker and Shneider [30] have recently...
proposed that breakdown relies on generation of secondary ruptures in the vicinity of pre-existing nanopores in the liquid.

After a short time, the electron density in the avalanche of an in-liquid discharge can reach \(10^{14} - 10^{16} \text{ m}^{-3}\) [7, 17, 21], and the ionization fraction can exceed 10% (depending on the pressure and temperature in the plasma filament). The gas temperatures of these in-liquid discharges can be 3000–5000 K [17]. The plasma channels have small diameters \(\approx 10 \mu\text{m}\) which leads to power densities in excess of \(10^{15} \text{ W m}^{-3}\). From measuring shock waves generated by such discharges, transient pressures are in excess of 1 GPa [21, 31]. With the use of pulsed power, the electric field at the streamer head can exceed 1 MV cm\(^{-1}\) [32]. It has been proposed that these streamers propagate in water in a reduced density channel comprised of self-produced vapor or existing microbubbles [33, 34]. These streamers can generate plasma in macroscopically sized bubbles as well [35]. In general the plasma properties are not very well characterized.

The in-liquid plasma is generated directly in the liquid or in a transient vapor phase consisting of the liquid with only minor contributions from dissolved gases, such as nitrogen and oxygen. As a result, the reactive species can be very different from those generated in typical gaseous plasmas. This is particularly the case when the liquid is a hydrocarbon, but it is also true for water. A model for plasma-in-liquid, microsecond pulsed discharges was developed by Mededovic and Locke [36] and describes a plasma filament surrounded by water. A schematic of the model and reaction chemistry is shown in figure 3. The model has two parts: an ionizing plasma which dissociates water and produces radicals, and a surrounding plasma in which the radicals recombine to produce long lived molecules. The model does not consider processes at the plasma–liquid interface at the filament edge and only electron impact dissociation and thermal dissociation of water are considered as radical production mechanisms. The calculated stable end products (\(\text{H}_2\text{O}_2, \text{H}_2\) and \(\text{O}_2\)), and densities of \(\text{H}^*\) and \(\cdot\text{OH}\) up to \(8.5 \times 10^{21} \text{ m}^{-3}\) agree well with liquid phase measurements [36]. These values are similar to the electron densities obtained by line broadening. An overview of the typical plasma properties and conditions for pulsed direct liquid discharges is in table 1.

Plasma parameters that directly and indirectly determine plasma processes and subsequent chemical reactions in the wake of an individual plasma channel or filament in the liquid are highly dependent on strong spatial and temporal gradients. When generated in the liquid, reactive species are able to interact on short time-scales with the medium that supports the discharge. Very different effective reaction rates or reaction efficiencies can be expected compared to gas phase discharges. For example, hydroxyl radicals (\(\cdot\text{OH}\)), with reaction rates that are basically diffusion controlled will react at the plasma–liquid interface or after penetration into the liquid by only a few micrometers [37]. Understanding the formation of reactive species and secondary chemical compounds by plasmas in liquids, including reactions rates, poses considerable challenges for diagnostic methods and the development of models.

2.3. Gas-phase plasmas

With few exceptions that involve ionic liquids [39, 40], plasmas generated in the presence of a liquid phase are operated at atmospheric pressure or higher. These atmospheric pressure discharges have recently been reviewed in [41–45].

Gas phase electrical discharges generated between a metal pin and a water electrode have been extensively investigated [46], using a variety of discharge geometries, including the metal pin to liquid water electrode configuration [17] (see figure 2(C)). An image of a glow discharge in air with a water anode is shown in figure 4. These discharges have similarities with contact glow discharge electrolysis in which the metal anode is submerged in the liquid and the plasma is formed in a vapor layer. The vapor layer includes gases produced by electrolysis and evaporation, and this layer surrounds the electrode when a large current is driven through the system [2]. A review by Sen Gupta has recently addressed this topic [47]. A discharge generated between two falling film liquid electrodes has also been investigated [48].

Liquid electrodes, similar to resistive electrodes, stabilize the discharge which prevents contraction of the discharge at the electrode. The stabilization can be due to the distributed resistivity but most likely other mechanisms are also involved. Diffuse glow discharges can be generated with water electrodes even with DC excitation in atmospheric pressure air [49]. Typical operating conditions are an electrode gap of a few mm with currents of 5–50 mA and voltages of \(\approx 1\text{kV}\) [50]. These discharges strongly interact with the liquid. A large fraction of the discharge power is dissipated in the liquid leading to large rates of evaporation when the liquid electrode is the cathode. Akishev et al. have shown in the case of a discharge in a bubble that the evaporation is much more efficient when the liquid electrode is the cathode compared to the anode [51]. Gas temperatures in excess of 3000 K and electron densities of \(\approx 10^{19} \text{ m}^{-3}\) have been reported [50, 52]. The electron energy distribution can be non-Maxwellian and the mean electron temperature is \(\approx 1\text{eV}\) in the positive column. When the liquid electrode is the anode, self-organized patterns are often observed as shown in figure 4. Self-organization in cathode layers has been studied in considerable detail and also occurs for solid electrodes [53, 54, 56].

Measurements of reactive species in pin-water electrode discharges are scarce, although Xiong et al. [59] recently measured \(\text{OH}\) densities in excess of \(10^{23} \text{ m}^{-3}\). Bobkova et al. [57] modeled the reactive chemistry in the same discharge using a 0D chemical kinetics model, and the results show a rich chemistry including large densities of \(\text{NO}, \cdot\text{O}, \cdot\text{OH}\) and \(\text{HO}_2\). The large electric field in the cathode sheath can lead to instabilities of the plasma–liquid interface [56, 58] which may then produce enhanced transport between the gas and liquid phase. A summary of the properties of these discharges in air is in table 1.

Pin-water electrode geometries can be used to generate corona discharges (low power) or spark discharges (high power) [49] in the gas phase. The corona discharge generates an ionic wind which leads to deformation of the liquid interface [63]. These discharges have not been studied in detail.
Electrical discharges generated along the surface of water have also been investigated, particularly in the case of the flashover (see figure 2(D)) [64]. These devices are streamer discharges which propagate at the gas–liquid interface. Typical propagation velocities of are 1–10 km s$^{-1}$ [65]. Recent studies of these devices are motivated by the potentially enhanced rate of transfer of reactive species from the gas to the liquid phase since the species are produced at the interface. Studies of surface discharges have emphasized the phenomenological aspects of their operation. More quantitative measurements by Adamovich et al have been made of (diffuse) ionization waves at the gas–liquid interface providing plasma properties and densities of reactive species [66, 67]. Surface discharges can also occur in bubbles in liquid water [68, 69].

A major emphasis of current research is on atmospheric pressure plasma jets (APPJs) which are often not in direct electrical contact with the liquid. The reactive species produced by APPJs are convectively transported to the liquid by the gas flow through the jet. Forced convection then enhances the transfer and generation of reactive species. Reviews on APPJs are in [45, 70]. APPJs are commonly operated as dielectric barrier discharges with either one or two outer ring electrodes [71, 72], a central needle electrode [45], or single electrode jets with capacitive coupling [73]. Excitation frequencies range from DC, kHz and MHz, to GHz in continuous wave mode or modulated formats [45, 74]. A major difference among these jets is the orientation of the electric field to the direction of flow of the gas [75]. In the cross-field jet (see figure 2(B)) the electric field is generally perpendicular to the gas flow while in the linear jet (see figure 2(C)) the electric field is generally parallel to the gas flow. While in many cases the plasma in linear jets will be in direct contact with the liquid if the discharge is sufficiently close to the liquid, cross-field jets are often not in electrical contact with the liquid [76]. Cross-fields jets can, however, generate guided streamers producing electrons and ions far from the nozzle [45]. In these latter configurations, the reactive flow of species impinging on the liquid is largely devoid of ions, and the liquid interaction is dominated by neutral species produced by the plasma. Photolysis by UV photons generated by the plasma and being absorbed in the liquid may also be important. For reactive species generation in the liquid there are significant differences between the plasma touching the liquid surface and the non-touching case. Recent comparative modeling of these two cases has shown a significant influence of the touching or not-touching configurations on the reactive species formed in the liquid [61]. Initial experimental results confirm this prediction [77]. Typical plasma conditions for a nanosecond pulsed jet in a non-touching configuration are shown in table 1. While this might not be the case for direct liquid phase discharges, ozone is commonly an important source of reactivity in gas phase discharges containing O$_2$ or air [78, 79].

2.4. Multiphase plasmas

2.4.1. Gas discharges with dispersed liquid phase—aerosol plasmas. Aerosols have been extensively used in plasma technology in, for example, inductively coupled plasmas (ICPs) to identify atomic compounds in liquid samples through atomic emission spectroscopy (ICP-AES) and mass spectrometry (ICP-MS) [80–85]. In these applications where the plasma is close to thermal equilibrium, the aerosol completely vaporizes within its plasma residence time. However, this experimental [81, 83, 86] and theoretical [85, 88–90] research has improved our understanding of the behavior and evaporation of droplets in plasmas. Aerosol containing plasmas that are closer to being non-equilibrium have also
been investigated. Most often the aerosol contains a precursor for plasma deposition [91–96]. Evidence of droplets surviving in non-equilibrium low-pressure [95] and atmospheric pressure [97] plasmas have been discussed and the impact of the aerosol on the plasma properties have been quantified [82, 96]. However, the impact of the plasma on the physical and chemical state of the droplets is still poorly understood [88].

Electrostatic spraying of liquids (electrospray) is a well-established process forming the basis of many applications (e.g. electrospinning, electrospray ionization mass spectrometry) [98–103]. There are many modes of continuous and intermittent electrospray, depending on the gas flow rate, liquid surface tension, conductivity and viscosity. Water is not a typical liquid used in electrospray due to its high surface tension resulting in the need for high voltage to produce the electrospray. This voltage is often close to the electrical breakdown of the surrounding gas. However, using water electrospray at voltages higher than the breakdown potential results in an electrical discharge in combination with the generation of a spray of water droplets [100, 104–106]. This configuration enables the efficient mass transfer of active plasma species into the water due to the micrometer dimensions of the droplet with large surface-to-volume ratios. For example, the efficient production of H$_2$O$_2$ in pulsed discharges with a water spray has been attributed to the rapid mass transfer from H$_2$O$_2$ produced in the gas phase into liquid droplets. Once in the droplets, the H$_2$O$_2$ is shielded from the highly reactive plasma environment which potentially can destroy the H$_2$O$_2$ [107].

Recent investigations have raised issues on the type of interactions between aerosol droplets and the surrounding plasma, and whether these interactions are different from those at the bulk plasma–liquid interface. An aerosol droplet experiences many processes including selective heating, charging and plasma-species diffusion that differ, at least in scale, from their analogies at the interface of a bulk liquid and a plasma. Initial results show that droplets can survive a few millisecond residence time in low-temperature atmospheric pressure plasmas and that this time is sufficient to produced many chemical reactions in the liquid aerosol [108]. Turner et al recently performed 3D simulations of the interaction of non-equilibrium atmospheric pressure plasmas with droplets containing precursors such as HMDSO for deposition purposes [109, 110].

2.4.2. Discharges in bubbles and foams. Bubbles are ubiquitous in liquid media. Energy transport at the interface during plasmas interacting with liquid water can drive instabilities leading to formation of bubbles in solution in addition to affecting the micron-sized bubbles already present. Intentional injection of bubbles into liquid water for plasma production has been extensively investigated [69, 111–113]. A common method is to use a feed gas capillary tube to inject gas into the liquid which also serves as an electrode biased with high voltage. With sufficiently high voltage, a plasma is formed inside the bubble before it breaks off of the capillary. The discharge tends to take the form of surface streamers propagating along the plasma–water interface [69], as shown in figure 5. Simulations suggest that the electron temperature in such wall hugging streamer discharges are 8–10 eV with peak plasma densities as high as 10^{22} m$^{-3}$ [114]. Similar electron densities have been found experimentally [115]. In all cases, plasma production, and formation of reactive species largely occur in the gas phase at the plasma–liquid interface. Physical processes at the interface of bubble discharges are complex and dynamic. The electric field at the streamer head along the surface is large (several hundred kV cm$^{-1}$). Sufficiently high electric fields can locally affect chemistry through electric field-induced decomposition and charged particle acceleration [116].

Discharges in bubbles can be produced both in bubbles attached and detached from the electrode. In many respects a streamer formed at a needle electrode serves as an extension of the physical electrode when the bubble is detached [117]. Bubble dynamics inherently lead to pressure oscillations and this significantly complicates the description of discharges in bubbles. Gas temperatures and electron densities significantly vary and strongly depend on the composition of the gas in the bubble, conductivity of the liquid, discharge power, excitation voltage and size of the bubble [17].
Sonoluminescence is the impulsive optical emission from plasmas produced in imploding bubbles in liquids when excited by acoustic waves without externally applied electric fields. The sonochemical plasma is formed inside the bubble as it collapses and is much smaller than the plasmas typically associated with bubbles with diameters of the plasma less than 1 µm. The lifetime of the plasma as measured in single-bubble experiments is ≈100 ps [120–122]. In general, three regions are distinguished to account for the sonochemical reactivity

- bubble interior (hot spot at 5000–10000 K),
- bubble-liquid interface (600 K–1900 K) and
- bulk solution (room temperature).

Measurements of the plasma inside the bubble have been obtained through indirect methods such as optical emission spectroscopy and modeling [123]. The exact origins of the sonochemical plasma and light emission are still subject to debate [124].

An extreme situation of bubbles in water is foam. Foams are thermodynamically unstable colloidal structures that can be described as highly concentrated dispersions of gas in excess of 90% in a two-phase system with a gas as a dispersed phase and the liquid as a matrix [125, 126]. The water is present in thin liquid film membranes [127] which separate different gas ‘bubbles’. Foams can be created using whipping, gas injection, shaking and aspiration. Foam properties depend on the composition of the solution, presence of surfactants and contaminants, methods of foam formation and maintenance, temperature and pressure.

Experiments have been reported on electrical discharges and generation of active species in foaming columns [128]. The difference between a bubble and foaming reactor is schematically depicted in figure 6. The large diameter bubbles and the interfacial surface are the most preferred places for discharges occurring at low applied voltage. At higher voltages, a seemingly homogenous spatial distribution of the discharge can occur (see figure 6). H2O2 was produced 10 times more efficiently in a foam reactor compared to a bubbling reactor for similar plasma conditions. Foaming leads to a significant increase of mass and heat transfer (compared to bubbling) [129] and more intense plasma–liquid interactions which potentially enhance interfacial reactions. Significantly different plasma behavior was observed in investigations of positive streamers onto large bubbles and foams depending on the composition of the liquid–water versus dielectric oil [130].

2.4.3. Discharges generated in the vapor phase by local heating. A vapor phase in the liquid can be formed by intensive local heating and electrolysis by pre-discharge currents. Plasma formation can also occur in the vapor phase on metal electrodes with high DC or low frequency AC currents [3, 131, 132]. Diaphragm and capillary discharges rely on the same mechanism of plasma formation. Electrical current is constricted through a hole in a dielectric barrier separating two reservoirs filled with a conductive liquid at different electrical potentials. Applying a high voltage across the two metal electrodes inside each reservoir produces Joule heating that evaporates the liquid in the diaphragm or capillary (see figure 7). The high voltage drop now occurs in the vapor phase leading to plasma formation in the bubble. The major difference between these discharges and contact glow discharge electrolysis is that the plasma is not in contact with a metal electrode. This discharge has a long history in the development of current interrupters where the current is blocked due to formation of the vapor bubble in the opening in the dielectric [133]. The complex and dynamic nature of the vapor bubbles lead to highly dynamic and often irreproducible discharges. As a result, there are few studies describing the physics of these discharges. Most studies have focused on the generation of reactive species by capillary [68, 134] and diaphragm discharges [135, 136] in the liquid phase. Micro-discharges formed during plasma–liquid electrolytic oxidation processing have similar production mechanisms and physical properties [137].

Exploding wire discharges [138] and laser produced plasmas [26] in liquids have also been investigated. Exploding wire discharges are generated by passing a large current through a thin metal wire leading to the evaporation of the metal and a high intensity arc surrounded by liquid. A focused laser locally evaporates the liquid and produces a bubble. The high energy density can then lead to ionization. Since both approaches lead to high density, thermal plasma, these discharges are outside the scope of this review.

3. Species transport at the gas–liquid interface

3.1. Introduction

Improved insights into the physics and chemistry of transport at the plasma–liquid interface (e.g. liquid water–air) will be gained by integrating the results and methods from a wide range of related fields, including aerosol science and atmospheric chemistry [139, 140], colloidal and interfacial surface chemistry [141], evaporation and condensation [142], and phase equilibrium and gas/liquid solubility [143, 144].
Analysis of the structure and dynamics of the gas–liquid interface is important for many of these fields. In this review, we will emphasize the plasma–liquid interactions where the liquid is water. Tools and methods such as classical transport theory [145], classical and non-equilibrium thermodynamics [146], and molecular methods such as Monte Carlo and molecular dynamics (MD) have been used to analyze the gas–liquid interface where, for example, molecular and continuum rates of neutral species transport produce similar values [147].

In the plasma–liquid interactions considered here, chemical reactions typically occur in the bulk gas and liquid phases, and at the interface simultaneously with transport processes. Bulk gas phase and liquid phase kinetics will be described in section 6. A single reaction such as the formation of hydrogen peroxide by hydroxyl radical recombination

\[
2\text{OH} \rightarrow \text{H}_2\text{O}_2
\]

(1)
can occur in the gas, the liquid, or at the interface by

\[
2\text{OH}_{(g)} + \text{M} \rightarrow \text{H}_2\text{O}_2(g) + \text{M}
\]

(2)

\[
2\text{OH}_{(aq)} \rightarrow \text{H}_2\text{O}_2(aq)
\]

(3)

\[
2\text{OH}_{(int)} \rightarrow \text{H}_2\text{O}_2(int)
\]

(4)

where the interfacial reaction is followed by incorporation of the hydrogen peroxide into the liquid (H$_2$O$_2$(int)\rightarrowH$_2$O$_2$(aq)). Understanding these reactions at the gas–liquid interface remains a challenge. In this section, interfacial processes, reactions and transfer mechanisms both for neutral and charged species will be reviewed.

3.2. The gas–liquid interface

Equilibrium analysis at phase boundaries began with Gibbs [148, 149] who developed the general conditions for phase equilibria in which the temperatures, pressures, and chemical potentials at a phase boundary are equal in the absence of gravitational, electromagnetic, and mechanical forces. Lewis [150] extended this view to incorporate the fugacity in place of the chemical potential, and subsequently the fugacity and activity coefficients to utilize experimentally measured mole fractions and pressure to provide a means to account for non-ideal liquids and gases [151]. Simple relationships such as Henry’s law for solute partitioning at the gas–liquid interface can be derived from these principles of phase equilibrium in the limits of ideal gases and ideal solutions [144]. The change in Gibbs free energy between the bulk vapor and bulk liquid in aerosols is used to define absorption while the change in free energy between the bulk liquid and interface is used to define adsorption [147].

In the field of surface science, mechanical equilibrium is used to account for surface tension and the geometrical
structure of the phase boundary [143]. Ultimately macro-
scopic properties such as surface tension and dynamic pro-
cesses such as the rate of mass and energy transport at the
interface are controlled by the intermolecular attractive and
repulsive forces that govern the liquid and gas phases, respec-
tively. In the liquid, the fraction of molecules having a kinetic
energy sufficient to overcome the cohesive forces is small
while in the gas or vapor phase the kinetic energy is higher
and repulsive forces are stronger than attractive forces [142].

The transition between liquid and gas phase can be con-
ceptualized by the change in density across the interface (see
figure 8) [152] and estimates indicate that this transition
occurs over a few nanometers or less [142, 147, 153, 154].

Although from a practical matter, most studies assume the
interface to be atomically flat, it is likely that the interfacial
structure is more complex and this complexity may be impor-
tant in transport processes. For example, Jungwirth and Tobias
reported that the sub-nm interface is highly dynamic, with
non-stationary corrugations that may produce capillary waves
[155]. Garrett found that the scale length of the transition from
the vapor to liquid is 0.3–0.6 nm under ambient conditions,
and that the rough interface has fluctuations over picoseconds
with water exchanging from the bulk to the boundary over
several picoseconds [147].

3.3. Interfacial reactions and transfer mechanisms

3.3.1. Neutral species. The interaction of a gas molecule
or ion with the surface of an aerosol particle or bulk liquid
involves many transport and kinetic processes [156]. A frame-
work for describing such processes [157–159] is schemati-
cally shown in figure 9. This framework represents the net
gas uptake by atmospheric particles by gas kinetic collisions,
adsorption onto the particle surface (aerosol), absorption into
the bulk of the particle, desorption from the surface, bulk dif-
fusion in the condensed phase, and chemical reactions at the
surface of the particle or in the bulk of the particle. In some
cases parameters for these processes are available in the lit-
erature [160, 161]. Surface accommodation coefficients and
desorption lifetimes can be estimated by MD simulations or
density functional theory (DFT) [147, 158, 162]. Reaction rate

Figure 10. Scattering simulation of *NO2 transport across gas–liquid water interface. The evolution of the probability with time for direct scattering from the surface, trapping by adsorption, desorption and absorption into the liquid. Reproduced with permission from [173], copyright 2012 Royal Society of Chemistry.

Figure 11. Variation of the yields of H2 (○), and combined H2O2 (triangle) and O2(1Δ) as a function of the charged transferred to the liquid during contact glow discharge electrolysis. Reproduced with permission from [238], copyright 1994 Elsevier.
coefficients can also be estimated by many methods [163]. Experimental methods in aerosol science have been developed to measure surface accommodation coefficients, and include falling films devices, droplet chain systems, cloud chambers, molecular beam apparatus, and the electrodynamic balance [164–166].

The coupling of adsorption, typically at solid surfaces, with chemical reactions is well addressed in the field of heterogeneous catalysis [167]. Two common mechanisms to describe such catalytic reactions are the Langmuir–Hinshelwood process where the overall rate is controlled by the surface reaction while the adsorption and desorption steps are at equilibrium; and the Eley–Rideal mechanism where a bulk phase species reacts directly with an adsorbed species. These mechanisms may also occur for radicals impinging on a liquid surface. The Langmuir–Hinshelwood mechanism has been applied to surfactant adsorption at gas–liquid interfaces [168, 169]. Since plasmas can generate a large flux of reactive species onto the liquid, the Eley–Rideal mechanism may be important for species adsorbed at a plasma–liquid interface.

Another approach to obtain these parameters is atomic scale modelling which provides insights to microscopic processes and phenomena at a level of detail that may be inaccessible to experiments. While certain data produced by modeling can be directly compared to macroscopic experimental measurements, such as diffusion coefficients or Henry’s law constants, the advantage of atomic scale simulation is in providing microscopic data. Examples of processes that have been analyzed include diffusion of radicals in liquid water [170], activation energy barriers [171, 172], and the structure of the solvated *OH-complex [171, 172]. A review of the molecular simulation of transport at interfaces and derivation of macroscopic properties for atmospheric aerosols is in [147]. A sample from simulations of *NO₂ transport at an air–water interface is in figure 10, showing the probability of scattering from the surface, adsorption and desorption from the interface, and absorption into the liquid [173].

Atomic scale simulation can provide the profile of free energy as a species is brought from the gas phase through the interface into the bulk of the liquid by sampling methods such as umbrella sampling [174, 175], the weighted histogram method [176] or umbrella integration [177] which enable extraction of the potential of mean force. The concentration ratio at two positions (e.g. in the bulk liquid and incorporated into the water–air interface) is given by

\[\frac{c_1}{c_2} = \exp\left(\frac{-\Delta G_{12}}{RT}\right) \] \[(5) \]

where \(\Delta G_{12} \) is the free energy difference between the species at position 1 and 2.

Atomic scale simulations have been performed for the adsorption and absorption of small molecules and radicals in water based on classical reactive [178], nonreactive [179–181], combined quantum/classical [182, 183] or ab initio [171, 172] MD methods. While these studies have been carried out...
in the context of atmospheric chemistry, they are also relevant for plasmas contacting liquids. For hydrophobic species such as O$_2$ and O$_3$, the free energy difference between the bulk and gas phases is positive, a few kJ mol$^{-1}$, and simulations predict that their concentrations are higher in the gas phase than in the bulk liquid. Computationally derived hydration energies have good agreement with experimental values. These simulations also show a shallow minimum in the air/water interface, again a few kJ mol$^{-1}$, and so predict a concentration increase at the interface. From the free energy profiles, the thickness of the total interface is estimated to be \approx1 nm, while the concentration increase in the topmost layer (closest to the gas phase) is over \approx0.5 nm. The increases in the concentrations of O$_2$ and O$_3$ at the interface relative to the bulk liquid are estimated to be \approx 40 and 10 times, respectively. For hydrophilic species, including *OH, HO$_2$ and H$_2$O$_2$, the calculated free energy profiles indicate that these species are stabilized in the bulk of the liquid, by 19 kJ mol$^{-1}$, 29 kJ mol$^{-1}$ and 42 kJ mol$^{-1}$, respectively. They are further stabilized in the water/air interface by an additional 6, 2 and 2 kJ mol$^{-1}$. This leads to a concentration enhancement in the interface relative to the bulk liquid by factors of 8, 2.3 and 1.5, respectively [179]. Atomic hydrogen is however hydrophobic with a free energy of 19 kJ mol$^{-1}$ [184].

The lifetime of radicals and other species at the interface should also be considered. For example, Wick et al. [180] calculated a 150 ps residence time at the interface during the uptake of *OH from the gas phase to the water interface. From the radial distribution functions derived from MD simulations, it was shown that stabilization or destabilization of species at the interface and in the bulk liquid are due to differences in hydrogen bonding [182, 183, 185].

Reactive classical MD simulation, performed by Yusupov et al. [178], indicate that *OH is not confined to the gas–liquid interface while HO$_2^-$ remains at the interface. This apparent contradiction with the outcomes of free energy simulations might result from the reaction–diffusion process in the liquid occurring through repeated reactions of the *OH with the surrounding water molecules, exchanging an H*-atom and reforming the reactants. Diffusion coefficients for *OH, H$_2$O$_2$ and HO$_2^-$ were calculated to be 0.84 Å2 ps$^{-1}$ (0.84 \times 10$^{-4}$ cm2 s$^{-1}$), 0.13 Å2 ps$^{-1}$ (0.13 \times 10$^{-4}$ cm2 s$^{-1}$) and 0.07 Å2 ps$^{-1}$ (0.07 \times 10$^{-4}$ cm2 s$^{-1}$), respectively. From these reactive simulations, HO$_2^-$ was found to react with water to form the superoxide anion, O$_2^-$, and the hydronium ion, H$_3$O$^+$. HO$_2^-$ reacts with another HO$_2^-$ molecule, forming H$_2$O$_2$ and O$_2$. H$_2$O$_2$ was only found to react when 3 water molecules are sufficiently close, forming 2HO$_2^- +$ H$_2$O.

The diffusion coefficients of solutes in gases and liquids can be estimated using standard methods [186, 187] and these values have been used in plasma–liquid models [188].

3.3.2. Ions

The transport of cations (positive ions) across the plasma–liquid interface for plasma relevant conditions is relatively unexplored [189, 190]. It is common in models to assume that the potential energy of all cations is large compared to any activation energy barrier (such as surface tension) required to enter the liquid, and so cations are mostly immediately solvated when striking the liquid. Atomic scale simulations have been performed to investigate the interaction of ions with the water surface [191, 192]. These simulations provide insights on the sputtering mechanism of water molecules from the interface, the depth of ion penetration, and the temperature increase of the liquid induced by ion impact. It was found that even 100 eV O$^+$ ions do not penetrate beyond the liquid surface by more than about 3 nm [192]. At this energy, however, the average sputter yield was calculated to be 7.0. It was also found that not all impinging ions are incorporated into the liquid, but some ions are reflected upon impact. A local temperature increase of about 50 K at a 5 nm depth in the liquid was also observed upon a single ion impact.

However, the mean-free path of an ion at atmospheric pressure (and room temperature) is less than 1 µm which is significantly smaller than the typical sheath thickness of a steady-state plasma at atmospheric pressure. The ion energy impinging on a liquid can be approximated by the electric field times the mean-free path ($E \times l$). With an electric field of 1000 V cm$^{-1}$ or less, ion energies in steady-state atmospheric pressure plasmas are expected to be of the order of a few eV at most, much lower than those considered in the modeling studies. A small fraction of very energetic ions can be produced in specific cases of transient nanosecond pulsed discharges where ionization waves strike liquids, but even in these cases the average ion energy remains of the order of at most a few eV [193].

Estimates of ion energies in glow discharges with liquid electrodes have been made from the yield of oxidized species in the liquid. The estimated values of ion energy are 90 eV assuming that the plasma transfers its oxidative power mainly through energetic ion impact on the water cathode [194]. To achieve this ion energy would require that the sheath collapses to a thickness close to the ion mean-free path, or less than 1 µm. UV photons and neutral reactive species from the gas phase can also transfer oxidative power from the plasma to the liquid phase, and so perhaps less energetic ions are needed. These interactions require further investigation.

The transport of anions (negative ions) across the plasma–liquid interface is less clear. Since anions typically do not have a positive potential energy, they are more energetically equivalent to neutral species than to positive ions. However, the anions are likely to be far more polarizable than either neutrals or cations. It is not well understood how negative ions penetrate the plasma–liquid interface. The reverse process is poorly understood—for example, do cations leave the liquid?

Finally, a secondary electron emission mechanism on ion impact on a liquid surface has been postulated by Mezei et al. [46, 194]. This is an extremely important process as it is highly likely that the plasma is sustained by processes dramatically different than the secondary electron process at the surface of metal electrodes. Direct electron emission from pure water requires 6.1 eV and could be achieved by photoemission with wavelengths shorter than 203 nm. The hydrated electron only requires an energy of 1.56 eV to leave the water surface [195]. Based on these observations, Cserfalvi and Mezei proposed a secondary electron emission process involving aqueous electrons with and without the involvement of protons depending on the pH of the liquid [194]. Estimates of the secondary electron emission coefficient fit experimentally
3.3.3. Electrons. Electron-induced reactions at the liquid interface can be generally classified into two types: (a) highly energetic electrons which could (vibrationally) excite, dissociate (including dissociative attachment) or ionize water molecules, and (b) low energetic electrons which adsorb and absorb, and eventually become solvated electrons ($e_{\text{aq}} \rightarrow e_{\text{aq}}$). Electrons are hydrophobic with a large solvation energy of -156 kJ mol^{-1} [184]. Although intensively studied in many contexts, the transport of electrons across the plasma-liquid interface is poorly understood [197, 198]. Many experiments have been performed on the solvation and transport of electrons within water and water clusters. The electron is often initially inserted into the water or cluster as a high energy particle—an electron beam, or generated internally by radiolysis or photoionization. These electrons have energies far in excess of any barrier that might inhibit their adsorption. However, the transport of low energy (less than 1 eV) electrons into the water is less clear [199, 200]. In radiation chemistry a solvated electron is formed after the electron produced by the absorption of ionizing radiation is thermalized and the surrounding molecules orient in response to the negative charge of the electron [201]. Solvated electrons in water are also called hydrated electrons.

The lifetime and the state of these solvated electrons (e_{aq}) are not well understood [202–209]. For most practical applications it might be sufficient to consider that solvated electrons either recombine at the interface through an interface neutralization mechanism, with, for example, ions reaching the interface from the plasma

$$\text{e}_{\text{aq}} + \text{A}^+_{(\text{g})} \rightarrow \text{A}_{(\text{g})}.$$

(6)

These reactions are analogous to those occurring on a solid surface in contact with a plasma.

There are many other reactions of solvated electrons in and with liquid water as reported in the radiation chemistry literature. The following reactions have been reported to be important for many relevant photolysis conditions in the absence of other scavengers [210]:

$$2\text{e}_{\text{aq}} + 2\text{H}_2\text{O} \rightarrow \text{H}_2(\text{g}) + 2\text{OH}^–$$

(7a)

$$2\text{e}_{\text{aq}} + \text{H}^+ \rightarrow \text{H} + 2\text{OH}^–$$

(7b)

The relative importance of these reactions depend upon concentration of solvated electrons, presence of solvated electron scavengers, temperature, pH, and in some cases the presence of dissolved gases. For example, in the presence of dissolved oxygen, it was found that solvated electrons can combine with dissolved O_2 to form $\text{O}_2^–$ as well [61]. The effects of plasma specific conditions on the lifetime and reactions of solvated electrons need further investigation.

The energy of an electron striking the surface is most important to those processes that have significant threshold energies. These interfacial and liquid phase reactions will most likely differ from gas-phase reactions because molecules in the liquid state more strongly interact with each other and multi-body processes will dominate over two-body reactions. Reaction products at the interface may become either gas-phase or liquid-phase species, and depending on the outcome, they will have very different impacts on the subsequent chemistry [211].

Over the past decade, our understanding has improved of the structure and dynamics of the hydrated electron, e_{aq} through a combination of cluster experiments, the development of photoelectron spectroscopy of liquid micro-jets, and sophisticated simulations. A characteristic feature of e_{aq} is its strong ($\sigma_{298\text{~K}} = 8.6 \times 10^{-17}\text{ cm}^2$) [212] optical absorption spectrum centered at 720 nm which has a distinctive shape with a Gaussian red edge and a Lorentzian blue edge [213, 214]. The reactivity of the hydrated electron has been extensively studied due to its role in radiation chemistry [184, 215]. Several laboratories have reported that the vertical detachment energy of the hydrated electron is 3.3 eV using photoelectron spectroscopy of a water micro-jet [202, 216–218]. This result agrees with extrapolations of cluster experiments [214, 219] which, analogous to solid-state physics, have provided a view of e_{aq} as a defect state lying within the band-gap of water [220]. Calculations indicate that a large part of the electron distribution occupies a dynamic cavity formed by approximately 4 water molecules, while a roughly equal contribution protrudes out of this cavity including a diffuse tail that extends beyond the first solvation shell [221].

Assessments of the solvation of the hydrated electron at the water/air interface have relied on sophisticated simulations [208, 222, 223], second harmonic generation spectroscopy [224] and photoelectron spectroscopy of liquid micro-jets [225]. An early study observed unexpected weakly-bound surface electrons [226], akin to clusters [219]. The highest surface selectivity is achieved through second harmonic generation spectroscopy. This diagnostic has shown the dynamics of the interfacial electron to be similar to those in the bulk, thereby suggesting that at the interface, the electron can be regarded as being fully solvated. Other experiments indicate that e_{aq} resides within $\approx 1\text{ nm}$ of the surface [224]. This view is supported by calculations showing that a free electron at the water surface solvates within a few picoseconds to form a hydrated electron [208, 223]. From the perspective of a low energy electron approaching a water surface, the solvation dynamics to produce a fully solvated e_{aq} are expected to be very fast. Nevertheless, a fraction ($\approx 10\%$) of the density at the water/air interface may protrude into the vapor, suggesting that the reactivity of e_{aq} towards vapor-phase species may not be negligible.

In an atmospheric plasma with an aqueous anode, a large flux of electrons is incident onto the water–air interface, likely leading to a high interfacial concentration of e_{aq}, as recently measured for a DC glow discharge [199]. These electrons are both highly reactive and have an anomalously high diffusion constant, $D_{298\text{~K}} = 4.9 \times 10^{-5}\text{ cm}^2\text{ s}^{-1}$. Many other sources
of reactivity are also generated by the discharge, including highly reactive radicals and photons. The radiation chemistry community has evaluated many of these reactions [184, 215]. For example, *OH is produced in large quantities near the interface. Given that the $e_{\text{aq}}^{−} + * \text{OH} \rightarrow \text{OH}^{−}$ reaction has a rate constant of $k_{320, \text{K}} = 3 \times 10^{10} \text{ M}^{-1} \text{ s}^{-1}$, efficient production of the $\text{OH}^{−}$ anion may be expected. Rates for the reaction of $e_{\text{aq}}^{−}$ with most other relevant species have been similarly determined in water radiolysis [184]. However, it is unclear whether rate coefficients at the water/air interface are the same as in the bulk. The effect of strong local electric fields on interfacial electrons similarly requires further investigation. Electron collisions with clusters of two and more molecules of water have been analyzed using R-matrix methods [227, 228]. Additional insights may be obtained from gas-phase experiments on electron attachment to water clusters performed under cryogenic conditions. Due to the reactive nature of $e_{\text{aq}}^{−}$ with most other species that are produced at the interface, it is likely that its density will not remain high. While the lifetime of solvated electrons is short compared to even short-lived radicals such as *OH, this short lifetime does not imply solvated electrons are not important. They are an important precursor for other reactive species and could play an important role in plasma-induced chemistry for reactions at the plasma–liquid interface.

3.4. Plasma electrochemistry

Electrochemical reactions can occur in plasma contacting liquids since classical reduction–oxidation reactions are likely in such systems. Electrode-mediated chemical processes such as electrolysis typically occur at solid-(electrode)-liquid interfaces. Classical electrochemical reactions at solid–liquid electrodes often follow and are generally limited by Faraday’s law whereby the reaction yields are proportional to the current. Faraday’s constant specifies the charge of one mole of electrons and Faraday’s law assumes a 100% current efficiency based upon the stoichiometry of the given electrochemical reaction. (See [229] for a more extensive analysis of the thermodynamics of water electrolysis reactions.) In many electrochemical reactions the current efficiency is less than 100%. In early work on glow discharges and contact glow discharge electrolysis in liquids, Hickling [3, 230–232] demonstrated current efficiencies larger than 100% indicating that electrons from the plasma can participate in more than one reaction in series or additional radical induced reactions account for the increase in current efficiency (see figure 11). Current efficiencies larger than 100% have also been reported for electrical discharges in water [233]. Some cases reported less than 100% efficiency [234]. While energies of electrons in non-thermal plasmas are 0.1–10eV, the temperature of electrons in classical electrolysis at ambient temperature (298 K) is 0.025 eV. Therefore there can be significant differences between classical electrochemical reactions and plasma chemical reactions. There is a growing field of plasma electrochemistry for plasma-solid interfaces to account for these differences [235, 236]. For example, in an argon plasma over a water surface direct electrolysis reactions such as $2\text{H}^{+} + 2e^{-} \rightarrow \text{H}_{2(g)}$ can be significant [237].

Another motivation to consider plasma electrochemistry arises from the electrical point of view that the plasma behaves like a metal electrode where the work-function has been elevated to the vacuum level. Depending on the specific coupling (DC, floating ground or AC) different mechanisms can take place but electron transfer occurs in a very similar way as in an electrochemical metal–liquid interface. However, different from a standard electrochemical interface, the electron energy needs to be included at the plasma–liquid interface. While the classical theory of plasma sheaths is the same as that in electrolytes (Debye-Huckel) chemical reactions may be different due to the higher energy of electrons in plasmas leading to different collisional cross sections.

4. Photon-induced interactions

4.1. Introduction

A significant fraction of the power dissipated by plasmas in gas/liquid environments is converted into ultraviolet (UV) light which may induce photochemical reactions [42]. The importance of UV radiation on the plasma produced chemistry in liquid is strongly dependent on the type of electrical discharge, the contact of the plasma with the liquid, and the gas composition. Photons most likely cross the plasma liquid interface unhindered other than by the change in index of refraction at the interface. The absorption of UV and vacuum ultraviolet (VUV) photons by water and impurities is well understood and characterized in the context of advanced oxidation processing (AOP) in water purification. There is a large knowledge base for plasma–liquid modeling that can be transferred from the AOP community in the context of removing pollutants from water [239, 240]. This knowledge base includes the photolysis of water and impurities [241, 242], radiation transport [243] and rate coefficients for reaction of reactive oxygen species (ROS) with organic and molecular species [184]. Synergetic effects of photochemistry and sonochemistry are also investigated [244]. This section provides an overview of VUV and UV induced reactivity in aqueous solutions.

4.2. UV and VUV generation

UV radiation is one of the principal forms of power dissipated from high-current electrical discharges in water [245–248]. Underwater plasmas initiated by exploding wires can transfer up to 28% of their energy into UV radiation [249]. The radiant power of the emitted UV radiation (190–280 nm) from pulsed streamer discharges in water (1 J/pulse) depends on the conductivity of the solution and can reach tens to hundreds of Watts during the pulse. This power corresponds to a UV radiation intensity of 0.1–10 mW cm⁻². In one experiment, the 190–280 nm photon production J was related to the discharge power P (W) as $J = 44.33 \cdot P^{0.11}$ (quanta/pulse) [250]. The absolute UV light emission from atmospheric pressure
gas phase plasmas is significantly lower compared to those produced by underwater plasmas, although the fluence and intensity vary with the type of reactor, gas composition, and other conditions [251]. UV emission from typical air plasma discharges are mostly at UVA (320 nm–400 nm), and UVB (280 nm–320 nm) wavelengths with intensities below 50 μW cm⁻² [252]. No significant emission was observed in the UVC (100 nm–280 nm). However, plasmas in direct contact with water are expected to deliver both UV and VUV fluxes on the liquid surface. The addition of water vapor leads to emission from OH (at 284 and 309 nm) [253, 254]. Dielectric barrier discharges (DBDs) are used for efficiently producing VUV (at 280–280 nm). However, plasmas in direct contact with water are expected to deliver both UV and VUV fluxes on the liquid surface. The addition of water vapor leads to emission from OH (at 284 and 309 nm) [253, 254]. Dielectric barrier discharges (DBDs) are used for efficiently producing VUV excimer radiation with efficiencies up to 60% for Xe₂ excimer emission. Similarly, plasma jets operating in atmospheric pressure Ar can emit significant amounts of excimer radiation [255]. This excimer radiation can then be transported several cm from the nozzle of the plasma jet [256] where photochemical reactions can take place. UV radiation is therefore an example of the VUV and UV emission spectra of an argon based plasma jet is shown in figure 12.

4.3. VUV radiation

VUV radiation with λ = 75–185 nm is particularly efficient in inducing chemical reactions. Since the absorption cross section of VUV photons by water molecules is large [258–260], the effect of VUV photolysis in practice occurs within a thin layer near the gas–liquid interface. The absorption coefficient of liquid water at λ < 170 nm is 10⁻³–10⁻⁵ cm⁻¹ [259], which means that 90% of the radiation is absorbed by a water layer with a thickness of 10⁻³–10⁻⁵ cm. At a wavelength of 185 nm the penetration depth is about 0.1 cm [261]. The absorption coefficient of saturated water vapor at a temperature of 24 °C (P = 3 kPa) is 1–10⁻¹ cm⁻¹ [260], which results in the absorption of 90% of the radiation in a vapor layer having a thickness of several centimeters.

Absorption of VUV irradiation by liquid water with dissolved gases such as O₂ results in dissociation of water and O₂ molecules, and formation of hydroxyl radicals, hydrated electrons, and oxygen atoms (ground state and excited). Some of the major reactions and their quantum yields for common VUV wavelengths are reported in [241,262–267]:

<table>
<thead>
<tr>
<th>Reaction</th>
<th>λ (nm)</th>
<th>Quantum yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>H₂O(aq) + hν → OH + H</td>
<td>124</td>
<td>0.93</td>
</tr>
<tr>
<td>147</td>
<td>0.65</td>
<td></td>
</tr>
<tr>
<td>158</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>H₂O₂(aq) + hν (<200nm) → [e⁻, H₂O⁺]</td>
<td>124</td>
<td>0.10</td>
</tr>
<tr>
<td>147</td>
<td>0.07</td>
<td></td>
</tr>
<tr>
<td>185</td>
<td>0.03</td>
<td></td>
</tr>
<tr>
<td>H₂O₂(aq) + hν → OH + H</td>
<td>105–145</td>
<td>0.89</td>
</tr>
<tr>
<td>145–185</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>H₂O(aq) + hν → H₂ + O(¹D)*</td>
<td>105–145</td>
<td>0.11</td>
</tr>
<tr>
<td>145–185</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>O₂ + hν → 2*O</td>
<td>139–175</td>
<td>1</td>
</tr>
</tbody>
</table>

While these reactions are often the main reactions, 30 reactions have been identified in total [241].

Photon transport depends on the absorption cross section and the density of the absorbers. From atmospheric chemistry the cross section for reaction (10) spans 10⁻¹⁷–10⁻¹⁸ cm² [265]. Excess photon energy can be dissipated in the kinetic energy of the fragments [266, 267]. The *OH formed by reaction (8) emerges in different electronic, vibronic and rotational states depending on the absorbing wavelength [268]. The products of reactions (8) and (9) in water initiate the formation of secondary species such as H₂, *OH−, O²⁺, H₂O₂, O₃, HO₂, HO₂, O₂[269, 270], as modeled in [62, 271].

The main disadvantage of VUV photolysis is the very thin water layer in which these radicals are formed which produces high local concentrations of radicals which in turn may lead to recombination and so a lower overall reactivity. For example, from modelling the concentration of *OH due to 172 nm VUV radiation is 10¹⁴ cm⁻³ for liquid water (100 mW cm⁻²) and 10¹³ cm⁻³ for water vapor (10 mW cm⁻²) [272]. Direct photolysis of organic compounds may also occur in the VUV region [273].

Due to the high absorption coefficients of VUV radiation, large effects can occur in small volumes, which produce extreme heterogeneity between the irradiated volume and the non-irradiated bulk solution [261]. The rate of induced bulk chemical reactivity strongly depends on the rate of mass transfer into and out of this small volume. These trends were confirmed using computational fluid dynamics (CFD) modelling [240]. Dissolved molecular oxygen in general plays an important role because it can react with short-lived hydrogen, carbon radicals (from fragments of organic molecules) and, to a smaller extent, with solvated electrons, resulting in the formation of longer-lived peroxy radicals in the presence of organic molecules. Thus, diffusion of oxygen into the irradiated volume also may become a rate limiting factor for the degradation of organic material.

4.4. UV radiation

UV radiation with wavelengths greater than 185 nm penetrates into the bulk of an aqueous solution where it can produce photochemical reactions with molecules other than water such as naturally occurring organic compounds, organic micro-pollutants, nitrates and nitrates. Following absorption of UV radiation by organic compounds, the molecule may dissociate and produce smaller organic compounds [239, 274]. There are large differences in photodissociation cross sections of organic compounds and differences in their dissociation products [274, 275].

Inorganic compounds also photodissociate following absorption of UV radiation which, in an aqueous environment, immediately lead to secondary reactions. In these reactions oxygen atoms and hydroxyl radicals play important roles [256, 276]:

\[
\text{NO}_2^- + h\nu \rightarrow *\text{NO} + \text{O}^* \tag{12}
\]

\[
\text{NO}_3^- + h\nu \rightarrow *\text{NO}_2 + \text{O}^* \tag{13}
\]
The reactive species formed in these processes may further react with organic compounds. Processes that involve hydroxyl radicals fall under the category of AOP. Hydroxyl radicals have rate coefficients near the diffusion limit (the equivalent of gas-kinetic rate coefficients in the gas phase), and non-selectively react with numerous organic molecules. There are several ways to initiate AOP, an example being UV A photolysis of nitrites produced by plasma that is effective in inactivating *E. coli* [79].

A well-known AOP based on UV is the UV/H$_2$O$_2$ process in which H$_2$O$_2$ is added to water. Hydroxyl radicals are the product of photolysis of H$_2$O$_2$ by UVC radiation,

$$\text{H}_2\text{O}_2 + h\nu \rightarrow 2 \cdot \text{OH},$$

(18)

The hydroxyl radicals initiate a reaction which provides a high quantum yield of the photolysis of H$_2$O$_2$:

$$\cdot \text{OH} + \text{H}_2\text{O} \rightarrow \text{H}_2\text{O} + \text{HO}_2^-,$$

(19)

$$\text{HO}_2^- + \text{H}_2\text{O} \rightarrow \cdot \text{OH} + \text{H}_2\text{O}.$$

(20)

This process is important in the production of H$_2$O$_2$ by in-liquid plasmas. For example, the yield of H$_2$O$_2$ produced by in-liquid discharges decreased as the conductivity of the liquid of the increased due to the increasing photolysis of H$_2$O$_2$ [250].

Another AOP based on UV is the UV/O$_3$ process which relies on the photolysis of ozone in the range 200–280 nm. The photolysis of O$_3$ produces the excited state O(1D)* which in turn reacts with water to produce hydroxyl radicals [277].

$$\text{O}_3 + h\nu \rightarrow \text{O}_2 + \text{O}(1\text{D})^*,$$

(21)

$$\text{O}(1\text{D})^* + \text{H}_2\text{O} \rightarrow 2\cdot \text{OH}.$$

(22)

4.5. Photocatalytic processes

Heterogeneous photochemical reactions utilize photocatalysts such as TiO$_2$. Absorption of UV radiation causes the formation of both conduction band electrons ($e^-)$ and valence band holes (h^+) [278, 279]. The electrons induce reduction reactions, whereas the holes can cause oxidation reactions. In the presence of oxygen, hydroxyl radicals may be formed, and so the combination of UV and photocatalysts can be considered an AOP. The wavelengths of the photons that can be absorbed and activate the photocatalysts depend on the crystal structure (e.g. anatase or rutile in TiO$_2$) and on the presence of other elements or compounds at the surface of the crystal or in solution [280]. The effectiveness of the process can often be improved by adding H$_2$O$_2$ [280] or ozone [281]. UV radiation from pulsed corona discharges has been used to induce photocatalytic processes in water [282–284].

5. Fluid dynamics, heat and mass transport

5.1. Introduction

Thermodynamics and transport phenomena in chemically reactive, ionized, multiphase fluid media are complex processes. As texts are devoted to even subsets of the topics addressed here, our intent is to only provide an introduction and to identify some of the key research challenges in fluid dynamics, heat and mass transport during the interactions between chemically reactive non-thermal plasmas and liquids at atmospheric pressure.

The theoretical description of fluid phases at atmospheric pressure generally assumes that the fluid is at local thermodynamic equilibrium (LTE). That is, all thermodynamic properties of the fluid such as internal energy and entropy, transport coefficients and rates of reaction are determined by the instantaneous and local values of temperature, pressure, and chemical composition. This assumption is always violated when dealing with non-equilibrium ionized gas-phase plasmas since electrons in the gas phase are not at thermodynamic equilibrium with the heavy particles. Electrons usually have mean thermal energies of a few eV compared to
the typically room temperature neutral species. LTE is still generally a good starting point for the majority neutral species, although important exceptions (e.g. vibrationally excited molecules or hot atoms, created by dissociative excitation) are common. Plasma electrons and ions generally have low mole fractions relative to neutral species. Their low concentrations enable those species to be treated separately from the fluid with appropriate collisional terms to account for transfer of energy and momentum with the neutral fluid with no significant loss of generality.

When more than one phase is present, for example when a gas phase is in contact with a liquid phase, there are well-established methods of treating the system. The most common assumption is that LTE applies at the interface for thermal and mechanical properties. With this approximation, the temperatures of the two phases are assumed to be equal at the interface and the phase boundary is at mechanical equilibrium (i.e. forces are balanced). The chemical compositions of each phase at the phase boundary follow from either bulk phase equilibrium properties (solubility or vapor pressure) or finite rate chemical reactions.

The solution properties may be non-ideal in which the thermodynamic properties are non-linear functions of the concentration of all other species present. The properties of non-ideal mixtures cannot be determined by mole fraction-weighted sums of pure component properties. This adds considerable complexity to the analysis and in some cases simpler approaches may suffice. For example, the gas will behave ideally in non-thermal atmospheric pressure plasmas for all but extreme conditions where, for example, excited states or ions have significant mole fractions.

Important aspects of fluid dynamics, heat and mass transport in the context of plasma–liquid interactions at atmospheric pressure are discussed in this section. The treatment largely follows conventional transport theory valid for any reacting gas/liquid system with flows being either laminar or turbulent. In this regard, interfacial mixing, stability and the nature of the interface are important. Special cases include: (a) two phases separated by a mostly stable interface with a well-defined area, (b) a continuous gas phase and discontinuous liquid phase (e.g. droplets of liquid immersed in a gas flow), (c) a continuous liquid phase with discontinuous gas phase (e.g. bubbles of gas, perhaps containing plasma, immersed in liquid), and (d) a completely turbulent, strongly disordered mixture of the two phases (e.g. when a turbulent gas flow strongly mixes with a liquid). Chemical reactions can have a large effect on the system as these reactions can change transport properties and produce changes in enthalpy.

Phase changes such as evaporating liquid and condensing or dissolving vapor are coupled to the Joule heating of electric discharges in contact with liquids. Ions and electrons play important roles in the chemical composition of the liquid due to the reactions they initiate. They are also important to interfacial stability through surface charging, electric fields and currents at the liquid–gas surface. For example, Taylor cones can form on charged liquid surfaces, and charged droplets and bubbles can have complex dynamic behavior which influences interfacial transport phenomena. The coupling between the ionized or plasma nature of the gas phase and the ionized or electrolyte nature of the liquid phase is a potentially important issue. Electric fields driving currents in each phase will in general affect the transport processes in each phase and at the interface.
5.2. Coupled plasma–liquid surface deformation

External forces associated with plasma production can significantly perturb the surface of the liquid at the plasma–liquid interface. Energetic particles at the interface, both charged and uncharged, bombard the surface as do photons. Electric fields resulting from the applied voltage and space charge can physically distort the surface [285–292]. Such electric field initiated distortions of the surface can lead to electric field enhancement which in turn leads to breakdown. The combination of these processes can initiate oscillations or instabilities at the interface as well as drive in-volume processes such as enhanced mixing, convection, and the dissipation of energy into the liquid. These instabilities may explain enhanced diffusion leading to in-volume mixing in static DBD–liquid reactors [293].

The interaction of streamers at the interface can also be a source of acoustic energy or even shock waves. These acoustic processes can drive radical production within the bulk liquid. Such acoustic energy is the basis of sonochemistry [294]. The non-linear surface wave-inducing effects of electric discharges above water have been investigated and analyzed by Robinson et al [295].

The formation of a Taylor cone at the gas plasma-liquid interface is schematically shown in figure 13. Taylor cones can form on the surface of an electrolyte liquid placed between two electrodes [296]. The electric field in the gas phase induces ionic charges in the liquid to form a cone-like shape on the free surface, leading to the emission of small charged droplets, in this case traveling from the liquid on the cathode surface towards the anode surface. These droplets can become part of a discharge between the electrodes. Taylor [297] first outlined the conditions leading to the formation of cones. The interface must be an equipotential surface and have a shape so that the electric field-induced force balances the surface tension induced by the curved liquid surface. The dynamics of a charged free liquid surface manifests itself in a variety of phenomena in nature and technology. For example, this phenomenon is important in the electrospinning of fibers and electrosprays (e.g. in mass spectrometry). Extensive analyses have been performed on the general physics of liquid jets and their stability [298]. In the context of plasma–liquid interactions, Bruggeman et al showed that a water surface can be deformed by the application of an electric field between a conducting pin and the water surface [291]. This deformation was followed by gas breakdown and plasma formation. It is likely that water vapor will play some role in the breakdown process under these conditions. Schwartz et al report observations of ejecting of droplets and solution plumes at the plasma–liquid interface for solution-cathode glow discharges [299].

A different kind of plasma-gas–liquid surface coupling occurs when a corona discharge in the gas phase produces an electric field-induced flow of ions that couple by momentum transfer collisions to induce neutral gas convection, so-called ionic wind. This gas convection can be seen dimpling of the surface of the liquid [63]. The shape of the water surface is controlled by a balance between the surface–normal pressure force caused by the stagnation pressure of the gas, the fluid hydrostatic pressure, the gas–liquid shearing force and the surface tension force. Similar phenomena occur when a plasma jet impinges on a liquid. The water subjected to a gas jet will dimple, splash or the gas will penetrate depending on the magnitude of the gas jet momentum [300]. For modest gas flows, the water surface is dimpled and only weakly disturbed [301]. In the case of a turbulent gas jets, interactions with liquid surfaces would likely lead to stronger disruption of the surface and ultimately, gas–liquid turbulent mixing [302].

5.3. Plasma coupled with gas bubbles

Instabilities at the plasma-liquid interface have been observed in gas bubble plasmas in liquids. Here plasma is introduced into the liquid through the breakdown of the gaseous content of the bubbles. The boundary of the bubble can be dynamically distorted due to acoustic, thermal, and electrostatic energy associated with plasma formation. Capillary wave excitation and subsequent propagation along the surface of a bubble has been observed in electrode-attached bubbles in which a streamer contacts the surface of the bubble, as shown in figure 14 [303]. Electric fields due to streamers inside the bubble are sufficiently strong relative to surface tension to perturb the boundary. Tachibana et al [69] showed how pulsed discharges within bubbles distort and disrupt the shape of the bubble. This disruption is shown in figure 15 for a bubble in N₂ gas with 30 kV applied to the electrode. The capillary waves produced at the surface of the bubble are a source of acoustic energy and can be transmitted to adjacent bubbles [288]. Ultrasound produced by these oscillations can drive sonochemical processes and so are important to understanding the interaction between plasma and bulk chemical changes in solution.

In the presence of a time varying electric field, bubbles can undergo distinct oscillation modes which can be described by spherical harmonics. These instabilities at the surface of the bubble can in turn locally distort the electric field leading to breakdown [291, 305]. With immersed electrodes and a finite liquid conductivity, Joule heating can lead to instability at the surface of the electrode, leading to a phase transition and a vapor bubble [288, 306, 307]. If the applied field is sufficiently strong, then plasma can form.

5.4. Plasma-induced liquid phase convection and mass transfer between gas and liquid phases

Convection—or bulk fluid motion—in the liquid phase is an important process in distributing reactivity produced by the plasma at the plasma–liquid boundary. If the plasma is sustained in the form of a jet, streamer discharge or corona (producing the ionic wind), there is bulk gas convection associated with the plasma [308–310]. Shimizu et al [311] investigated the effects of a streamer discharge in air above a liquid surface and found that convection could be induced in the liquid with speeds of several cm s⁻¹, sufficient to dominate over diffusion. The induced liquid flow was caused by shear stress at the
interface by the moving gas [311], an important mechanism in many plasma–liquid systems. Other complexities and subtleties certainly occur, demonstrated by Ar plasma jet—liquid surface interactions imaged by van Rens et al. [301]. Other mechanisms inducing liquid flow include thermally induced natural convection, Marangoni, electroosmotic and electrophoretic flows [312, 313]. Pressure gradients due to surface charging and corresponding induced flow can also occur. The latter is a surface flow induced by gradients in the gas–liquid surface tension. This could be caused by temperature gradients and/or concentration gradients along the surface of the gas–liquid interface [314].

The plasma-induced liquid convection, discussed further below, is an important subset of the transfer of (generally relatively dilute) chemical species between fluid phases—either from the gas to the liquid or the reverse. This is a topic that has a large literature and is important in both technology and nature [315]. In order for species to transport between phases, several processes must occur in series. First, the species must be transported to the phase interfacial boundary—generally either by bulk fluid motion (i.e. convection) and/or diffusion. The species must then enter the other phase at the interface and be transported away from the interface. Chemical reactions that transform the composition of the mixture may occur at any of these steps. The methods used to quantitatively compute the overall rate of mass transfer can vary depending on the conditions and goals of the analysis. The most general approach is to compose a set of coupled transport equations, chemical kinetic expressions and thermodynamic relations. While this approach is the most general, and allows for the coupling between individual steps that can be important, it is also the most complex and difficult to solve and interpret. An alternative approach is to consider the individual processes as independent, each consisting of a driving force and associated coefficient, either a kind of conductivity or resistance. The overall rate calculation is then similar to linear electrical circuit analysis with series or parallel resistances and/or capacitances. This approach has been developed for analyzing transport phenomena into and out of atmospheric aerosols. Coupled transport and reaction phenomena are summarized in reviews in the atmospheric aerosol literature [156, 161, 316–319].

The problems that arise in the context of plasma–liquid interactions will not be identical to atmospheric aerosols, but there are many useful analogies that can be used to analyze the interfacial transport. For example, Berkemeier et al. [317] considered a gas phase species X moving from the gas phase to the aerosol surface and reacting with a compound Y in the condensed phase. The overall rate is in general affected by one or more of the individual rate processes: the rate of mass transport of X to the particle surface; rate of reaction between X and Y at the surface; diffusion rate of X or Y in the bulk of the particle; and reaction rate in the bulk region. Eight limiting cases were identified. One such example for reactions of particle X and Y at the surface is the supply of X from the gas phase not limiting the process (so gas phase mass transfer is not limiting) and transport of Y from the bulk is not limiting the process. In this case, the rate of reaction is controlled solely by reaction kinetics between X and Y at the surface. At each step, a dimensionless quantity relating competing

Figure 16. Kinetic regimes and limiting cases of gas uptake by aerosol particles or bulk liquid mapped onto the axes of a cuboid representing reaction location, saturation ratio, and mixing parameter. Horizontal edges of the cuboid (left to right) correspond to four regimes governed by chemical reactions, bulk diffusion, mass accommodation, or gas-phase diffusion. Each regime includes limiting cases characterized by a single rate-limiting process and a dominant reaction location (particle bulk, B; surface, S; gas phase, G). Reproduced with permission from [318].

Figure 17. Schematics of temperature and concentration profiles above liquid in contact with plasma. The arrows indicate that both chemical species and energy can be transported in either direction depending on the local gradients.
rates is evaluated to determine if one of the competing rates is much larger than the others which then determines the limiting regime (see figure 16). This analysis, as described, does not necessarily address potentially more complex conditions at the bulk plasma–liquid interface. These conditions may include reaction mechanisms involving multiple chemical species and/or parallel or sequential reactions, heat transfer between phases, electrical effects in either phase, the possible role of convection in the bulk condensed phase, the possibility of unstable surfaces and the role of photons.

A critically important parameter in interfacial mass transfer is the ratio of gas and liquid concentrations of species at the interface, usually characterized by a parameter called the Henry’s law coefficient, or H. There are many possible units for gas and liquid phase concentrations so the corresponding numerical values of H will depend on these choices of units. Here, we use units of M/atm—liquid concentration of moles species per liter liquid divided by gas phase concentration expressed as the partial pressure in atm. For example, approximate H values (at 298 K) for species of interest to air plasmas are: $\text{O}_2 (1 \times 10^{-3})$; $\text{NO} (2 \times 10^{-3})$; $\text{O}_3 (1 \times 10^{-2})$; $\text{NO}_2 (4 \times 10^{-2})$; $\text{N}_2\text{O}_4 (1)$; $\text{OH} (25)$; $\text{HNO}_2 (50)$; $\text{H}_2\text{O}_2 (10^3)$; $\text{HNO}_3 (10^5)$ [143]. The H values differ by orders of magnitude and these differences can dominate rates of mass transfer in practice. Gases such as O_2, O_3 and NO have quite low values of H compared to H_2O_2 or HNO_3, and they are much more difficult to transfer from the gas to the liquid (water) phase. The temperature dependence of activity coefficients used to determine H is discussed in [320].

Another important factor in interphase mass transfer is the role of chemical reactions. If a gas phase species, such as O_3, is absorbed into pure water with no reaction to convert ozone into another compound, the rate of mass transfer from the gas phase will be relatively slow as ozone is relatively hydrophobic. This is reflected by the relatively low value of H for O_3 in water. However, if there is a compound in the water that rapidly reacts with O_3 as soon as it enters the water, the rate of mass transfer of O_3 from the gas phase could be much higher. The steady-state value of the ratio of liquid to gas phase concentrations (reflected in the value of H), arises because at steady-state, O_3 enters and leaves the water at the same rate. If the rate of O_3 leaving the water and re-entering the gas phase is negligible because O_3 quickly reacts when entering the water, then O_3 will only enter the water. The net rate of mass transfer may therefore dramatically increase when such reactive losses occur in the liquid phase. See, for example, [321, 322].

5.5. Coupled heat and mass transfer at plasma–liquid boundaries

An important consideration in plasma–liquid coupling are the ways that heat and mass will be transferred between plasma and liquid. Some of these concepts are illustrated in figure 17. Chemical species impacting the liquid surface will adsorb onto the surface with probability α_s, absorb in the particle bulk with probability α_b and desorb from the surface with characteristic time τ_d with the net sticking coefficient being γ [156]. The plasma produces reactive species in the gas phase which diffuse, drift (as ions) and convect to the liquid surface where they can interact with the liquid phase by these same set of processes. The concentration profiles sketched in figure 17 above the liquid surface show that some species will enter the
Liquid flow velocity of \(\approx (1 \text{ cm}) \) or transport of HNO\(_3\). Diffusive speeds in the liquid phase are produced by a streamer-like discharge is shown in figure 18, for transport of HNO\(_3\). Diffusive speeds in the liquid phase are generally small relative to even very small convective currents in the liquid. The diffusive speed scales as diffusivity divided by characteristic length \((D/L)\), which is about \((10^{-5} \text{ cm}^2 \text{ s}^{-1})\) or \(\approx 10^{-5} \text{ cm s}^{-1}\) in the bulk liquid. Even a relatively slow liquid flow velocity of \(<1 \text{ mm s}^{-1}\) is much higher than the diffusive speed. Convective transport (bulk motion of the liquid) tends to strongly dominate diffusive transport (due to random thermal motion) in the bulk liquid. This corresponds to a large Peclet number (i.e. the ratio of advective to diffusive transport). This may not necessarily be true at the interface of the plasma and liquid where there can be severe concentration gradients which enhance diffusive transport by many orders of magnitude.

Vapor from the liquid will be produced by evaporation at the plasma/gas–liquid interface since the plasma generally transfers heat to the liquid surface. The gas temperature profiles sketched in figure 17 are meant to show that heat may be transferred to or from the liquid surface. If, for example, the plasma transfers more energy to the liquid surface than can be transferred deeper into the liquid, to the evaporating water or to the bounding liquid container, the gas temperature at the gas–liquid boundary will be higher than the bulk gas temperature. Thermal conduction may therefore transfer heat either to or from the gas–liquid interface into the gas.

It is more common that the gas temperature in the plasma will be higher than that of the water and thermal conduction will transfer heat from the gas to the liquid. In general, the transfer of energy from the gas to the liquid (either in the form of thermal conduction of heat or in the form of ionized, vibrationally, electronically excited molecules or dissociated molecules) will cause some liquid to evaporate into the gas phase if the gas is not already saturated with the vapor. This is sometimes termed simultaneous heat and mass transfer because the rate of heat transfer to the liquid from the gas is balanced by and coupled to the rate of mass transfer of water vapor from the gas–liquid interface into the bulk gas phase [315]. If all the heat needed to evaporate the liquid into the gas comes from the gas itself (a common situation), then the rate of heat transfer to the surface of the liquid must be equal to the rate of mass transfer of liquid vapor (e.g. water vapor) to the gas multiplied by the enthalpy of vaporization per unit mass of the evaporating component. The water temperature will adjust until the local rates of heat and mass transfer are balanced. Note that the vapor concentration of the evaporating component at the interface will generally be at the vapor pressure of the liquid, and that this is a strong function of temperature. This is sometimes referred to as the wet bulb temperature since the same principle is used to determine relative humidity in air by comparing the temperatures of a dry bulb thermometer with a wet bulb thermometer. This mechanism can lead to a large amount of water vapor in the discharge particular when the discharge is in direct contact with the water surface and a large power flux is incident onto the liquid as is the case for a DC glow discharge with a liquid cathode [324].

6. Reaction rates in gas and liquid phase

6.1. Introduction

The plasma science and engineering community needs the assistance of researchers in many other areas to provide the fundamental data required to understand and exploit the phenomena we observe in plasma–liquid interactions. To make full use of the currently available data and to identify new data which are most critically needed from other areas (including fundamental experimental and theoretical atomic and molecular collision physics, radiation physics, and gas and liquid phase chemistry) the plasma community needs to define the specific environments and species of interest. In the case of plasmas and liquids, these environments are basically the initiating plasma, the plasma–liquid interface (including immediately above and below the interface) and the bulk liquid.

For example, in the case of atmospheric plasma jets one may need to consider (a) an inert gas initiating a plasma, which interacts with the gas phase of increasing humidity as a water or other liquid surface is approached, (b) the impact of charged and neutral particles and photons and penetration or migration of these species through the water surface, (c) the neutral and ion chemistry of short and long lived species immediately below the surface and (d) the resultant bulk liquid chemistry. In each of these environments the user community should estimate typical time scales, major expected species and define the dominant collision regimes (e.g. ion-neutral, neutral–neutral, radical–radical or radical-neutral, solvation or clustering) to help guide the production of data.

The data that is required are now distributed over a vast range of literature. Here we attempt to provide the reader with starting points for data searches. A few examples of published work where large reaction and chemical kinetics model data sets for gas phase plasmas include: helium based, water containing atmospheric pressure plasmas [325–330], argon based systems [331], for neon–xenon based systems [332] and humid air [57, 329, 333]. Recently there have been major developments in modeling activities to include the interaction of helium plasmas into air impacting on liquid water and the resultant chemistry within the liquid which contain extensive references to data for the gas, liquid and gas–liquid interface [62, 188]. All data sets should be used with caution. However, the recent success of models predicting specific experimental measurements, (for example, [334–337]) can provide additional confidence in the quality of the available data.

6.2. Gas phase

6.2.1. Electron molecule scattering. Comprehensive reviews of the data from binary collisions of electrons with H\(_2\)O, both
experimental and theoretical are available [338–342]. A typical test of the applicability of data sets of cross sections for electron and ion transport is whether the fundamental datasets can be used to reproduce experimental swarm measurements by using the datasets in solutions of Boltzmann’s equation for the velocity distributions. The swarm data are typically Townsend ionization coefficient α, drift velocity w, mobility μ, diffusion coefficient D, and characteristic energy $eD\mu$ derived from measurements of electrons or ions drifting in constant values of \mathcal{E}/N (electric field/gas number densities). Often the initially generated data set of fundamental cross sections does not reproduce experimental swarm data due to there being missing data (e.g. vibrational excitation cross sections) or small inaccuracies to which the derived transport coefficients are very sensitive. It is then typical practice to make small adjustments to the datasets so that the experimental swarm data can reproduced. This then places high importance on the accuracy and availability of experimental swarm data. In addition to the older measured transport data [343–345], newer measurements have been made [346, 347]. There are several sets of cross sections that were derived based on the swarm (transport) technique [342, 348–352] which are based on several measurements of swarm data [18, 347, 351, 353–355]. While electron-molecule data are available for water vapor, mostly derived at low pressure; at atmospheric and higher pressures it may be necessary to include additional complex three body processes [19].

Most of these data sets are derived from the low energy transport data (1–2 eV) that do not overlap very well with the ionization cross section, even with the mean energies of electrons found in gas discharges. For that region, the swarm derived sets of transport coefficients often make extrapolations based on the available binary collision data. Results of de Urquijo [20, 347] that include multiplication (ionization minus attachment) coefficients have helped to extend the energy range. Further extensions of ionization coefficients are needed using swarm measurements at high \mathcal{E}/N [356]. Swarm analysis at somewhat higher energies (above 5 eV) relies heavily on ionization cross-sections being accurate [357] and those for water are covered reasonably well [358–360].

In the \mathcal{E}/N range from 30 Td to 90 Td (1 Td $= 10^{-17}$ V cm2), electrons are strongly influenced by the rapidly falling elastic and rotational cross sections (energies between 0.04 and 2 eV) [350, 351] of water which results in a rapid increase of all transport coefficients and mean electron energy. Under these conditions, the hydrodynamic approximation in analyzing swarm data may not be valid and a non-hydrodynamic kinetic (non-local) model may be required to both calculate and analyze the experimental data, including anisotropic scattering. Testing and rescaling of the available cross sections using non-hydrodynamic techniques may provide more accurate results and comparisons with experimental data that extend to high \mathcal{E}/N.

Data also exist for water vapor mixtures, most importantly humid air [361] and mixtures with He and Ar [347]. Experiments have shown that attachment to water vapor does not occur at thermal energies [362] so observations of $\mathrm{H}_2\mathrm{O}^+$ ions at low \mathcal{E}/N may be due to hydrated electrons being formed. Data for electrons colliding with the relevant reactive species (OH and $\mathrm{H}_2\mathrm{O}_2$), and water molecule clusters are mostly missing but some of the required data is beginning to emerge.

6.2.2. Ions in water vapor

The key challenge in measuring swarm parameters for ions in water vapor is the means of ion formation. In the case of ions that are produced in gases or liquids one has to reconstruct the entire multistep kinetics that may form a variety of ions through charge exchange to deconvolve the swarm data. In doing so, the transit time is difficult to establish because the identity of ions may change due to ion-molecule reactions en route from the anode to the cathode. Ions are good nucleation centers for the formation of clusters and their size may vary with distance and conditions which may then result in swarm measurements being pressure dependent and not dependent only on \mathcal{E}/N. Experiments with a variable drift length may be used to perform comparative measurements to decipher these dependencies. These issues require advanced theoretical and numerical treatments even in simplified swarm systems to deconvolve the raw swarm data.

The usual practice in the ion swarm community is to provide interaction potentials that can be used to determine differential cross sections. Most models relevant to plasma–liquid interactions typically require total cross sections with simplified models for angular distributions (e.g. forward scattering, isotropic or backward scattering). Transport coefficients can then be determined from the cross-sections and both can be applied in models [363–366].

Transport data for ions in pure water (vapor) exist for a few ions originating from $\mathrm{H}_2\mathrm{O}$ in a limited energy (\mathcal{E}/N) range: $\mathrm{H}_2\mathrm{O}^+$, OH^+, O^+, O_2^-, $\mathrm{H}_2\mathrm{O}^+$ and H^+. H^+ is particularly important as it is the lightest and thus the fastest ion, and it also leads to production of fast H atoms. Cross sections for fast neutrals may be required to explain the high rates of excitation for large values of \mathcal{E}/N [367] and in the cathode fall. A collection of cross sections for scattering of fast H atoms on $\mathrm{H}_2\mathrm{O}$ can be found in [368], which comprises available experimental data with cross sections obtained by scaling from corresponding electron impact cross sections.

The most prominent negative ions directly produced from water vapor are O^- and OH^-, although other negative ions such as H^- and $\mathrm{H}_2\mathrm{O}^-$ also occur in small quantities [369]. Cross section and transport sets are being developed for other ions as well [370]. Recent measurements of transport data for negative ions [371] in water vapor revealed that clusters are formed and that cluster size depends on pressure and other conditions [372, 373]. It is important to complete the cross section set for water-based clusters and to develop accurate models of cluster formation and related transport properties. Those data could be developed by implementing techniques currently used to study general hydration of charged particles.

Data for water related ions, both positive and negative, are abundant for humid noble gasses [374, 375] and are available for humid air [376]. General sources of data for ion transport coefficients can be found in [366, 377, 378] and in the LXCat database [349]. These data enable calculations of the transport
coefficients for relevant ions in some of the gases found in discharges in proximity to liquids.

A wide variety of ion-molecule reactions occur in the gas phase containing water vapor [379–386] including detachment reactions that have a number of different channels and a strong energy dependence [387–389]. New data or improvements to existing data are needed. However, including every possible reaction is often not practical. A strategy is needed to establish a reliable database for the primary reactions that can be extended to more complex systems adjacent to the liquid surface where the gas may be super-saturated with water vapor and interacts with the ambient gases. This is a region where there are significant gradients in the water content and also in temperature. While there is gas phase data available for ion-molecule reactions for most of the individual constituents in this region [386, 390], the accuracy of binary gas phase rate coefficients in this environment is questionable due to the propensity for forming water cluster ions. Descriptions of clustering, hydration and release from the hydrated state can be based on either simpler phenomenological models (effective lifetimes) or on more detailed kinetics. Models show that there are significant populations of H_2O^+_n, up to $n = 8$, NOH_2O^+_n, up to $n = 3$ or 4 for positive ions and $\text{O}_2\text{H}_2\text{O}^+_n$, $\text{OH}(\text{H}_2\text{O})^+_n$, $\text{NO}(\text{H}_2\text{O})^+_n$ up to $n = 3$ or 4 for negative ions. CO and CO$_2$-based negative ion clusters also need to be considered.

6.2.3. Neutral chemical reactions. Data for neutral–neutral chemical reactions relevant to plasma contacting liquids are typically scattered over a number of sources. The most arduous work involved in the modeling of chemical kinetics, and of plasma chemistry in particular, is the collection of reaction rate coefficients to formulate reaction mechanisms. In addition to electron impact processes, those mechanisms include reactions between neutral atoms and molecules, interactions with radicals, ion-molecule chemistry and reactions with or at surfaces. The interest in reaction mechanisms for atmospheric plasmas interacting with liquids was preceded by modeling and experiments on the use of atmospheric pressure plasmas for remediation of toxic gases from air. These earlier chemical reaction sets of humid air were compiled and developed by the group of Kushner [325] and many other groups working on corona treatment of air [329]. More recently a chemical reaction set describing He–O_2–H_2O plasma chemistries has been developed with reaction rate coefficients collected from different fields (44 species, 577 reactions), described in [327]. Additions and modifications have recently been made to this reaction mechanism and it has been validated for a diffuse RF He–H_2O glow discharge by comparing predicted densities for ^1OH and H_2O_2 with experiments [336]. Earlier work on helium discharges with humid air impurities was reported in [326] and recently extended in [330]. A large chemical reaction set of Ar discharges containing humid air is reported in [331]. This reaction mechanism was validated by comparing predictions for O_3, ^1NO and ^1O densities from a plug flow simulation with measurements made in a cold atmospheric pressure plasma jet [334, 337]. These reaction mechanisms have met with success in many venues. For example, humid air chemical kinetics models have been used to explain key reaction pathways in water vapor containing discharges [57, 333, 391].

Most of the plasma chemistry models developed for discharges in contact with liquids and generally in humid atmosphere rely on extensive compilations of data. Most notable are the evaluations of gas phase chemical reactions of neutral species involved in atmosphere chemistry [392, 393], databases for positive ion-molecule reactions [386] and neutral-neutral chemical reactions in non-thermal humid air plasmas [394] and for dry air chemistry [395].

Further sources of data can be found in the combustion community. Combustion and plasma processes have similarities in their approaches to experiments and modeling. For example, data used in cold flames and combustion simulations are directly applicable to modeling low temperature plasmas [396]. There are also large differences between plasma and combustion chemistry. For example, high temperature combustion, which is often cited as a source for rate constants in plasma processes, rely on different mechanisms compared to low temperature plasma processes and should therefore be used with care and thoroughly assessed before use. One important aspect of combustion modeling is the hierarchy that has been developed for validation of the simulation. This validation can be accomplished by many techniques, including significance analysis [397] and pathway analysis [398]. A similar validation hierarchy is being developed for low temperature plasma modelling [399]. The combustion community has gained advantage from using standardized reaction mechanisms such as GRIMech, which is essentially a list of community endorsed elementary chemical reactions and associated rate constants, a practice that would also benefit the low temperature plasma community [400, 401].

While data for the ground-state neutral reactions are relatively well represented in the literature, quantitative data for excited-state reactions is much less extensive. The interpretation of optical emission spectroscopy (OES) requires knowledge of production and quenching rates of the excited species. For example, in addition to electron-impact excitation, electron–ion dissociative recombination is an important channel in the production of excited species [402]. The data for these processes can be found in databases originally developed for lighting, upper atmospheric chemistry and excimer lasers [403, 404]. Reliable data sets are also needed for collisional quenching, three body quenching, rotational energy transfer (RET), and vibrational energy transfer (VET). Such data are critical for diagnostic techniques such as laser induced fluorescence (LIF). Data on the temperature and pressure dependencies of these processes is limited and most data is for the lowest excited states. There are several compilations that include data for excited states of OH, ^1O, $^3\text{O}_2$, ^1N, $^3\text{N}_2$. For example, Herron and Green proposed a reaction grid for neutral species in air plasmas and critically evaluated available data [394], while Schofield evaluated rate constants and their temperature dependences for reactions that involve metastable states of atomic oxygen ($\text{O}(2^3\text{D})$ and $\text{O}(2^3\text{S})$) [405]. The same author reviewed available gas phase chemical kinetic
rate constants for the interactions of the low lying electronic states of several atoms and molecules, including N(2D), N(2P), \(\text{O}_2\left(C^1\Sigma_u^+, C^3\Delta_u, A^1\Sigma_u^+, \right) \), OH(A^3\Sigma^+), with several collision partners [406]. Golde reviewed reactions and production of \(N_2(A^3\Sigma_u^+) \) [407]. Reactions of the first two electronically excited states of atomic nitrogen: N(2D) and N(2P), and of the first excited state of molecular nitrogen \(N_2(A^3\Sigma_u^+) \) are evaluated in [408]. Papers from the combustion community offer some data on collisional quenching, VET [409] and RET coefficients [410] for \(\text{OH} \). A source of collisional quenching rate constants for metastable states of rare gases is [411]. Several books are also a valuable source of data [412–414].

Overall, there are many good starting points for developing kinetic models of chemistry in water vapor containing plasmas, at least at room temperature while there are uncertainties at elevated temperatures and at non-standard pressures. There are also uncertainties in roles of fast neutrals and vibrational excited species in reaction mechanisms. Data addressing the generation and disposition of molecular and atomic clusters are needed to model the highly humid near-surface regions. Tests of the validity of data or critical evaluations for particular pathways are continuously needed including comparison with experiments. At the Lorentz Center meeting that initiated this review, a question was raised on the required reliability of experimental data for these comparisons. The attendee generally agreed that, at this stage in the field, a difference between experimental measurements and model predictions of up to factor of 2–5 is often acceptable for complex plasma chemistries.

6.3. Bulk liquid

The development and modeling of reaction mechanisms in the liquid phase require rate coefficients in the same manner as in the gas phase. Gas phase reactions typically involve collisions between two, and at very high pressures perhaps three species, in discrete separable events. Reactions in liquids are continuously perturbed by the presence of the solvent. Due to the discrete nature of these reactions in gases, rate coefficients for use in gas phase mechanisms can be determined by gas kinetic theory, molecular dynamics, and/or quantum chemical methods. However, due to the multi-body nature of reactions in liquids, there is no unified approach for theoretically deriving reaction rate coefficients in liquids [415]. Species densities in liquids can often be derived based on thermodynamic equilibrium. However, near plasma–liquid surfaces, reactions can be dominated by the non-equilibrium reactants that enter the liquid from the plasma. In these cases, a non-equilibrium, rate coefficient based analysis is required. For a detailed discussion of available data in the interfacial gas–liquid region, see sections 3–5.

A major source of relevant rates and identification of chemical mechanisms and pathways in the bulk liquid can be found in textbooks, journal articles and data bases of the radiation and sonochemistry communities. Some examples of textbooks are [78, 201, 416–418]. Two recent publications on plasma–liquid interactions which contain more pertinent and up to date data are [62, 188], while accurate thermophysical properties for a number of liquids, including water, are available at NIST Standard Reference Data website [419]. The AOP community also offers a rich source of basic data. This data typically focuses on \(\text{OH} \) reactions since they play an important or even dominant role in AOP due to the extreme reactivity and non-selectivity of \(\text{OH} \) which can be formed by a number of different mechanisms. Overviews of rate constants used by the AOP community are available [184, 242]. These datasets have been developed using various approaches. The group contribution method (GCM) used to predict \(\text{OH} \) constants in the gas phase [420–422] has emerged as the most accepted method and is implemented in U.S. Environmental Protection Agency software [423]. However, applying these methods to the liquid phase requires considering changes in functional group properties arising from the close spaced intra-molecular environment, for example, electronic push-pull effects, intermolecular hydrogen bond formation and steric effects. Recently, linear free energy relationships (LFER) have been developed to address some of these challenges [424, 425]. In addition a GCM for aqueous phase OH radical constants has been developed [163]. Other molecules in the aqueous phase may act as promoters, capable of regenerating the superoxide anion, or as inhibitors of radical reactions, and these species have strong influences on the chemistry. There have been many studies of such effects but generally this work focuses on reactions of biological molecules. Data is also needed on the dependence of reaction rates on pH and temperature.

Studies of electron transport in liquids have been carried out for many years up to the present. White et al [426] in generalized studies of soft condensed matter have included structure factors to account for multiple scattering in the high pressure liquid phase [427]. More recently this work has been extended to water and other liquids [426, 428]. The conclusion is that for energies above 5 eV one may be able to employ a binary collision approximation. At lower energies one needs to define different cross sections for calculation of momentum transfer and of energy loss. This approach, however, does not take into account more serious perturbations to the transport such as hydration.

Further work on how electrons can gain and dissipate energy in liquid water under influence of electric fields is necessary to establish the breakdown mechanism. More data is needed on the role of hydrated electrons and their propagation in the bulk liquid and the surface.

7. Diagnostics

7.1. Introduction

In view of the complexity of plasmas in and in contact with liquids, diagnostics are of key importance to increase our understanding of these plasmas. This section reviews the state-of-the-art in diagnostics and identifies important challenges.
72. Gas phase diagnostics

Gas phase diagnostics have been developed to measure plasma parameters and densities of species present in the plasma, and so improve our understanding of their operation. Diagnostics that are typically used in low pressure plasmas, such as OES, optical absorption spectroscopy, LIF, actinometry, mass spectroscopy and electrical probe measurements are complicated by collisional processes when applied to the atmospheric pressure plasmas of interest to plasma-liquid interactions. From a practical matter, in many cases, these diagnostics cannot be used at atmospheric pressure. In other cases, such as OES and LIF, complex modeling is required to account for collisional processes to properly interpret the data obtained at atmospheric pressure [429–431]. Similar laser based diagnostics are used in combustion research and techniques are available from that community for interpreting LIF [431, 432].

Two recent papers review the use of diagnostics in atmospheric pressure plasmas [433, 434]. An overview of diagnostics relevant to measuring plasma parameters and species densities in atmospheric pressure plasmas is in Table A1 in the appendix. The majority of these techniques are optical diagnostics which require stable and reproducible plasmas as signal-to-noise ratios are often improved by the accumulation of data from several measurements. Line-of-sight diagnostics such as absorption spectroscopy [334, 435] require some tomographic technique, such as an Abel inversion, to produce spatially resolved data. However, even methods such as LIF, where direct imaging produces spatially dependent data, may suffer from degraded resolution by time averaging if plasmas are not reproducible in space or time. This loss of resolution is an issue for turbulent plasma jets and when the gas flow has a strong influence on the position of the plasma filament. In fact, plasma jets that appear laminar and well behaved in a time averaged image have shown nearly chaotic behavior with single shot imaging [302]. Similarly, deformation of the plasma–liquid interface can lead to random formation of plasma filaments [291] which also require single shot laser measurements to properly resolve. This approach, including saturated LIF, has a long history in diagnostics applied to turbulent combustion but has not been used extensively in the field of plasmas [436].

If spatial resolution is not required several techniques can be used to correlate plasma produced species with reactivity produced in the liquid phase. Such approaches include measuring gas phase densities with mass spectrometry at an interface [437], measuring the terminal long lived products using a multi-pass cell for Fourier transform infrared (FTIR) absorption spectroscopy [438] or quantum cascade laser absorption spectroscopy [439]. These data may provide good assessments of densities for remote plasma jets which do not directly interact with the liquid. However, care should be taken when extrapolating these results to plasma jets that directly interact with the liquid. The effects of changing flow parameters or increasing water vapor concentration may significantly impact the long-lived species even in the effluent of the jet. For example, Schröder et al [440] directed the effluent of an APPJ onto different solid surfaces and showed that the distribution of atomic oxygen, and reactive oxygen species (ROS) in general, depends on the character of the surface [440]. These measurements were made by two-photon absorption laser induced fluorescence (TaLIF) measurements.

Species are transferred from the liquid to the gas phase due to evaporation and sputtering when plasmas interact with liquids [24]. Water is electronegative and undergoes rapid vibrational relaxation that can lead to significant gas heating [441]. Since water is also a strong quencher of excited molecules such as OH(A) [442] the spatial dependence of quenching rates needs to be accurately known to properly derive *OH densities from LIF measurements near the liquid surface. An example of an LIF measurement of *OH density in a plasma jet impinging on a water surface is shown in figure 19. Similarly, Ries et al [443] and Yonemori et al [444] measured the *OH distribution near dry and (partially) humid surfaces using LIF, and showed that with increasing humidity of the surface, the *OH concentration directly above the surface also increased.

TaLIF of atomic O* and H* have quenching times shorter than 1 ns for many relevant conditions at atmospheric pressure.
and these measurements are challenging using nanosecond pulsed lasers [446]. New laser and detection systems with sub-nanosecond pulses and corresponding sub-nanosecond temporal resolution enable measuring the effective lifetimes of excited states required for absolute density measurements [447, 448].

Due to the often limited accessibility of active (laser) diagnostics and the complicated reactor geometries involving liquids, OES is the most common diagnostic used to investigate plasmas in liquids. The emission spectra of such plasmas are often dominated by the OH(A-X) ro-vibrational band and the hydrogen Balmer lines [449]. These features provide a means for obtaining gas temperatures and electron densities. However, in general the production processes of excited species and the subsequent plasma kinetics strongly influence the OES spectra, and in turn complicate the interpretation of the data. OES based studies of liquid plasmas use combinations of absolute OES and modelling to yield species densities [48, 450]. To our knowledge, one result has been reported on \(^1 \text{OH} \) density measurements in a submerged arc discharge by absorption spectroscopy [451]. In all cases, the dynamics of the liquid interface may influence the path of the beam and so affect the spatial resolution of the measurement.

Researchers often use OH(A-X) emission as a measure of the density of OH(X). However, OH(A) can be produced in many ways [452] and many assumptions need to be made to derive the density of OH(X) from the luminescence of OH(A). Typically the OH(A) emission intensity decreases with increasing H\(_2\)O concentration [453] while the OH(X) density tends to increase with increasing H\(_2\)O concentration [454].

Even in highly collisional plasmas, there may be strong deviations from equilibrium rotational distributions. As described in [455] the rotational distribution of OH(A) is often non-Boltzmann (see figure 20). For many conditions occurring in atmospheric pressure plasmas in the presence of liquids, the characteristic collisional quenching time of OH(A) by H\(_2\)O is of the same order as the rotational energy transfer time (rotational relaxation). Under these conditions the OH(A) distribution of rotational population does not thermalize. As a result, the distribution is strongly influenced by the formation process that produces the initial distribution and which is often a non-Boltzmann distribution.

Atomic excitation temperatures are also often measured by OES. However, atomic excitation temperatures are not necessarily the same as electron temperatures. This equality only occurs in plasmas in LTE. By assuming LTE, atomic emission spectra in sonoluminescence can be successfully produced, although deviations from equilibrium have also been found [456-458]. The excitation temperature can depend on the energies of the emitting atomic levels and the production mechanism of the excited states. Collisional-radiative models are usually necessary in non-equilibrium plasmas to fully interpret experimentally measured line intensity ratios.

Continuum radiation can be the dominant emission from high density direct discharges in liquids [459]. In high electron density plasmas continuum radiation mostly originates from free–free bremsstrahlung and from free-bound recombination between electrons and ions [460]. In plasmas with a low ionization degree, continuum radiation emitted through free-free interactions between electrons and neutral atoms becomes important. In the presence of hydrogen or water vapor there may be a significant contribution of H\(_2\) radiative dissociation continuum in the UV [461], which is most likely the case for plasmas in bubbles. In many cases, the continuum radiation in plasmas and liquids has been attributed to black body radiation originating from the electrode [462]. There has been much discussion in the literature on the origin of continuum radiation in sonoluminescence which includes chemoluminescence processes [456, 462–464]. However, this emission is highly dependent on the precise plasma conditions. Most plasmas of interest are optically thin, although exceptions include sonoluminescence [464] and exploding wires discharges in water [464].

While discharges in the gas phase interacting with liquids can be produced in DC mode, the majority of discharges in liquids and bubbles are highly transient in nature. These conditions reach their limit in sub-nanosecond pulsed direct discharges in liquids and single bubble sonoluminescence. As mentioned earlier, the sonochemical plasma formed inside the bubble as it collapses has a diameter of less than 1 \(\mu \text{m} \) [466],

![Figure 20. Boltzmann plot of the rotational distribution of OH(A) obtained from the emission spectrum of OH(A-X) from a discharge in a vapor bubble in water. Reproduced with permission from [455], copyright 2014 IOP Publishing.](image)

Table 2. Reaction rates of L-histidine with some major components produced by the plasma [230].

<table>
<thead>
<tr>
<th>Reacting species</th>
<th>Reaction rate (M(^{-1})s(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(^1 \text{O}_2^*)</td>
<td>3.2–9 \times 10^7</td>
</tr>
<tr>
<td>(\epsilon_{\text{aq}})</td>
<td>6 \times 10^9</td>
</tr>
<tr>
<td>(^1 \text{OH})</td>
<td>4.8 \times 10^7</td>
</tr>
<tr>
<td>(\text{O}_3)</td>
<td>3.9 \times 10^3</td>
</tr>
<tr>
<td>(^1 \text{O}_2^-)</td>
<td><1</td>
</tr>
<tr>
<td>(\text{H}^*)</td>
<td>2.3 \times 10^4</td>
</tr>
<tr>
<td>(\text{HO}_2^*)</td>
<td><2.3 \times 10^8</td>
</tr>
</tbody>
</table>

Note: The reaction rate constants can be \(\text{pH} \) dependent.
and its lifetime is ≈ 100 ps [120]. Time resolved optical diagnostics in direct discharges in liquids often reach the detection limit in both space and time in resolving the emission on a relevant time scale of plasma dynamics [23]. As these discharges are often not reproducible in space, spatially resolved measurements are difficult. A unique spatially resolved electron density measurement in a streamer channel in liquid water has been reported by An et al [21] which shows a significant dependence of the electron density on the position within the plasma filament.

Discharges both in small bubbles and directly in water can produce significant pressure gradients on nanosecond time scales. Mach–Zehnder interferometry has been used to quantify these transients in secondary streamers in liquids [21]. To computationally reproduce experimental data, short 2–3 ns pressure pulses with amplitudes of 2–3 GPa were required [21], as confirmed using Schlieren imaging to measure bubble expansion [467]. Similar effects have been investigated for nanosecond pulsed spark discharges in atmospheric pressure air by Laux et al [468].

There are exceptional challenges in using diagnostics for multiphase plasmas consisting of sprays and droplets. These conditions may include the formation of aerosols and droplets by instabilities of the liquid interface such as Taylor cones. The challenges lay in the randomness, size of aerosols below or in the range of the optical diffraction limit and the corresponding potential spatial gradients of plasma properties on similar length scales. Investigations of multiphase combustion processes have been performed [469–471] and may serve as a guidance to explore similar techniques within the plasma community.

73. Liquid phase diagnostics

Short and long-lived chemical species are produced in the liquid by plasmas either directly or transferred from the gas phase plasma being in contact with the liquid. These species can react at or penetrate through the plasma-gas/liquid interface and dissolve into the bulk liquid, and can initiate secondary chemical processes. Due to the dense hierarchy of the reactions giving rise to both stable and non-stable intermediates and reactions products, analysis of aqueous chemistry in plasma-treated liquids is often complex.

The level of detail required in analysis and measurement of liquid phase species often depends on the application. For example in biology, the activity of reactive oxygen and nitrogen species (RONS) in vivo might not directly correlate to specific and individual compounds but to a general redox activity, and so is expressed by the concept of oxidative stress [472] or redox-based wound healing [473, 474]. For these conditions, it suffices to measure the redox activity that is generated in liquids by plasma treatment as opposed to measuring specific species densities. One such method is measuring the redox potential in the liquid after plasma treatment using well-established standard electrode systems (e.g. standard hydrogen electrode (SHE), standard calomel electrode (SCE), standard Ag/AgCl electrode) [475]. Another possibility is using redox indicators such as ABTS (2,2′-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid)) that generate a stable green-colored radical cation detectable at 405 nm in an oxidative aqueous environment [476].

On the other hand, fundamental understanding of plasma induced liquid phase processes will require detailed knowledge of the plasma induced reactive chemistry in liquids. In the presence of air both ROS and reactive nitrogen species (RNS) are produced. Relatively small changes in plasma conditions often lead to large relative variations in production of RNS and ROS which could shift chemical reaction pathways in liquids. As a result, there is a great interest in measuring transient or short-lived reactive species and radicals produced directly and indirectly by plasma in liquids such as \cdotOH, O_2^-, \cdotNO, \cdotNO$_2$, peroxy nitrite (ONOO$^-$) and O$_3$. Some of these species are difficult to measure due to their short lifetimes and fast disproportionation in plasma/liquid systems. While many short-lived species have known absorption spectra [477], absorption measurements are challenging for plasma produced species as their densities are often low. The absorption spectra in liquids are also broad and often overlapping, which leads to challenges in the deconvolution of the absorption spectra of complex mixtures of reactive species. The end result is that measurements of plasma produced reactivity in liquids are most often of long-lived species such as hydrogen peroxide, nitrates, nitrites, molecular hydrogen and oxygen.

The measurements of reactivity in plasmas should be made with careful consideration of the organic content of the liquid. For example, \cdotOH are produced at the interface of most liquids in contact with plasmas. A very rapid process is the reaction of two \cdotOH radicals forming H$_2$O$_2$ which actually reduces the overall reactivity of the liquid. If there are organics in the liquid, reaction of \cdotOH with the organic can sustain reactivity by forming a new radical, and further reactions will be triggered. This sequence can lead to transfer of reactive species directly induced by the plasma to radicals which strongly depend on the organic molecules present in the liquid. A well-known example is the peroxidation of lipids. The reaction of \cdotOH with the lipids produce lipid peroxyl radicals and lipid peroxide [478].

Measuring reactive species in liquids could also be used to assess plasma reactivity. In many applications involving plasma and liquids, it is desirable not only to know the density of plasma constituents but also the actual flux of reactive species from the plasma reaching the liquid. While gas phase measurements can provide valuable insights, it is not straightforward to determine the flux reaching the target liquid from these measurements due to the complex transport processes encountered at the gas–liquid interphase. Measurement of the density of a long-lived species such as H$_2$O$_2$ in the liquid may in some cases correlate well with the fluence of H$_2$O$_2$ from the gas phase. This approach motivates the use of plasma dose to characterize reactivity. However, one should carefully use the term dose, a term that could have different meanings and not be comparable between different plasma sources. Oxidation potential of the liquid might also be seen as a plasma dose concept. Whatever
the definition of plasma dose, it remains a generalization and it does not express which species are responsible for the oxidation. This is particularly the case as different mixtures of species could lead to the same oxidation potential.

Reaction pathways can be investigated non-quantitatively by adding specific scavengers to solutions, a common method in biological investigations. This technique blocks certain chemical pathways and therefore is useful to check reaction mechanisms. Examples of scavengers include superoxide dismutase (SOD) for \(\cdot \text{O}_2^- \), catalase of \(\text{H}_2\text{O}_2 \), D-mannitol for \(\cdot \text{OH} \) and carboxy-PTIO for \(\cdot \text{NO} \) [230, 479–481]. However, scavengers can be non-selective; particularly scavengers based on non-enzymatic reactions. An example of non-selective scavenging for L-histidine which is often used as a scavenger of singlet-delta oxygen is in table 2. In addition, chemicals used as scavengers could also be modified by the plasma treatment. Therefore, it is necessary to keep the number of chemicals and reaction partners as low as possible to prevent misleading artifacts [482, 483]. For the complex chemically active mixtures created by plasma treatment, studies using scavengers should always be combined with positive controls.

Various types of analytical methods with different selectivity, sensitivity and precision are used in the investigation of plasma-treated aqueous liquids. These techniques include semi-quantitative methods using test paper strips which are dipped into the plasma-treated water to measure, for example, \(\text{H}_2\text{O}_2 , \text{NO}_2 , \text{NO}_3 \). Colorimetric measurements utilizing spectrophotometric assays are based on measuring the intensity of a color complex formed by reaction of the particular species with the relatively specific colorimetric reagent. These methods can be quantitative. An example is the yellow colored titanyl sulfate complex formed when titanium sulfate reacts with \(\text{H}_2\text{O}_2 \) [484]. This technique can be complemented by the bleaching of blue colored indigo dye by \(\text{O}_3 \) [485] or pink colored azo dye formed by Griess diazotization reactions with \(\text{NO}_2 \) [486]. A more sensitive, though not always fully specific, technique is based on fluorescence methods (typically based on fluorescein dyes [487]). Highly selective and precise measurement techniques of liquid species include ion chromatography (\(\text{NO}_2 , \text{NO}_3 \) [488]), gas chromatography (gaseous \(\text{O}_2 , \text{H}_2 \) stripped from the plasma treated liquid) [233], liquid chromatography (using chemical probes for detection of \(\cdot \text{OH} , \cdot \text{HO}_2 \) [489, 490] or electron paramagnetic resonance spectroscopy (using spin trapping probes for detection of \(\cdot \text{OH} \) and superoxide radicals) [482].

Short-lived species require \textit{in situ} and fast measurements, and performing these measurements presents challenges. However, even chemical analysis of long-lived chemical species in the liquid faces difficulties and requires special attention while working in complex liquid mixtures treated by plasma. Chemical composition of the surrounding environment (of both gas and liquid phases) strongly influences the physical-chemical properties of the plasma-treated liquid. Many of the chemical products in the liquid, especially those produced by air plasmas, are not stable. After the liquid has been treated by the plasma, reactions can continue to occur. These processes include catalytic reactions (e.g. \(\text{H}_2\text{O}_2 \) reacting with metal impurities sputtered from electrodes, such as Fe, Cu, W, Pt (equations (23) and (24))) [491–494], pH dependent processes (e.g. reaction between \(\text{H}_2\text{O}_2 \) and nitrates [495]), and decomposition of ozone under alkaline conditions (equation (26) and (27)) (496, 497)). Some of these reactions are:

\[
\text{Fe}^{2+}/\text{Cu}^{2+} + \text{H}_2\text{O}_2 \rightarrow \text{Fe}^{3+}/\text{Cu}^{2+} + \text{OH}^- + \text{OH}^- \quad (23)
\]

\[
\text{WO}_2^{2-} + \text{H}_2\text{O}_2 \rightarrow \text{WO}_3^- + \text{H}_2\text{O} \quad (24)
\]

\[
\text{NO}_2^- + \text{H}_2\text{O}_2 + \text{H}^+ \rightarrow \text{NO}_3^- + \text{H}_2\text{O} + \text{H}^+ \quad (25)
\]

\[
\text{O}_3 + \text{OH}^- \rightarrow \cdot \text{OH} + \text{HO}_2^- + \text{O}_2^- \quad (26)
\]

\[
\text{O}_3 + \text{H}_2\text{O}_2 \rightarrow \cdot \text{OH} + \text{HO}_2^- + \text{O}_2 . \quad (27)
\]

Therefore, care should be taken to properly measure chemical species produced in plasma treated liquid. Fixation of liquid samples removed from the continually reacting plasma treated liquid is an important step in an analytical procedure. This isolation can be accomplished by either radical quenchers or suitable buffers. For example, analytical methods to measure \(\text{H}_2\text{O}_2 \) in mixtures with nitrates are often performed under acidic conditions (e.g. iodometric, ammonium molybdate, metavanadate, titanium sulfate methods) [484, 498, 499]. These conditions and methods can lead to significantly lower values of \(\text{H}_2\text{O}_2 \) due to decomposition of \(\text{H}_2\text{O}_2 \) by nitrates upon acidification by a coloring reagent (equation (25)). This bias can be avoided by adding azide to the sample of \(\text{H}_2\text{O}_2 \) prior to mixing with the acidic analytic reagent [488].

\[
3\text{N}_3^- + \text{NO}_2^- + 4\text{H}^+ \rightarrow 5\text{N}_2 + 2\text{H}_2\text{O} \quad (28)
\]

Consequently, nitrates are not stable under acidic conditions and disproportionate to nitrates (equations (29) and (30)) [500] (see figure 21). This process can be eliminated

Figure 21. Post-discharge evolution of hydrogen peroxide, nitrite and nitrate in aqueous solution (pH 3.3) after treatment by an air plasma. Reproduced with permission from [488], copyright 2014 IOP Publishing.
Review

by mixing the sample of plasma treated solution with basic buffer.

\[
\text{NO}_2^- + \text{H}^+ \leftrightarrow \text{HNO}_2
\]

(29)

\[
2\text{HNO}_2 \rightarrow \text{NO} + \text{NO}_2^- + \text{H}_2\text{O}
\]

(30)

Ozone dissolved in liquid is also not particularly stable and its stability is strongly pH-dependent (equations (4) and (5)). The lifetime of peroxynitrite is typically less than 1 s in acidic solutions, which implies very low steady-state concentrations of peroxynitrite are likely present in plasma-treated water (nanomolar levels). It is therefore difficult to detect ONOOH in plasma treated water even if it is produced in large quantities during the plasma treatment. Attempts to identify peroxynitrite in plasma-treated water were made through absorption spectra [501, 502], using fluorogenic probes [503], and by analysis of the antibacterial activity of model solutions mimicking plasma-treated water [501, 502, 504]. Recently, the rate of formation of peroxynitrite in plasma-treated water was quantitatively determined through kinetic analysis of the post-discharge reaction between H$_2$O$_2$ and nitrite ions in air plasma-treated water at pH 3.3 (equations(31) and (32)) [505].

\[
\text{NO}_2^- + \text{H}_2\text{O}_2 + \text{H}^+ \rightarrow \text{O}=\text{NOOH} + \text{H}_2\text{O}
\]

(31)

\[
\text{O}=\text{NOOH} \leftrightarrow \text{OH} + \text{NO}_2
\]

(32)

Since many of these processes are conducted in saline solutions, particularly for biological applications, the effect of the buffer needs to be accounted for. Recently the possible importance of chlorine chemistry has been suggested by Wende et al [77].

Radicals with their unpaired electron are paramagnetic. Electron paramagnetic resonance (EPR), also known as electron spin resonance (ESR) or electron magnetic resonance (EMR) spectroscopy is the most commonly used technique to determine radical densities. This method provides both qualitative and quantitative data. In the case of plasma–liquid-interactions, direct observation of many radicals is not possible because of their short lifetimes [506]. To overcome these limitations, EPR measurements can be enhanced using the spin trapping technique [507] in which the radicals are conjugated to specific spin trap compounds to prolong their lifetime by several orders of magnitude. The EPR spectra of these radical-spin-trap-adducts have characteristic finger print signatures which can be quantitatively analyzed [508, 509]. One of the most frequently used spin traps for oxygen radicals is 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) [510–519] which traps oxygen, nitrogen and carbon centered radicals.

The use of spin trapping assisted EPR measurements of plasma generated radicals in the liquid phase was first reported by Bullock et al who detected hydroxyl and hydrogen radicals in aqueous solution after glow-discharge electrolysis [520]. Hase and Harada also detected both radicals after aqueous solution treatment with a contact glow discharge at room temperature [521]. Both studies as well as recent reports have not indicated the absolute concentrations of the radicals [520–526].

Despite the potential advantages of using spin traps for monitoring short-lived species, care should also be used in the analysis. For example, reactions of spin traps with other species present in the media, spin trap and spin adduct stability, appropriate calibration, EPR instrumentation parameters, compound variations due to different manufacturers of the spin trap or the effect of the time delay between treatment and measurement [482] are all variables that need to be controlled. Different liquids can also change the results, not only due to different reaction pathways but also due to perhaps inherent scavenging capacity [483]. For example, ethanol is known to have a hydroxyl radical scavenging [527] capability while also yielding additional radical generation sources. Another drawback of EPR spectroscopy is that only the averaged concentration in the total volume can be determined, since time and spatially resolved measurements cannot be performed.

Figure 22. Mass spectrometry measurement of *NO build-up in the liquid phase for applied gas flow and plasma exposure. For He flow only we observe a decrease in time of the *NO signal due to the decrease of dissolved air components in the water. In the case of the plasma effluent this decrease is not observed and in the case of a flow containing 1000 ppm *NO an increase in *NO signal is observed with time. The example illustrates the potential of membrane mass spectrometry for liquid analyses [529, 530].
Short-lived RNS formed by plasma activation, such as $^\cdot$NO and $^\cdot$NO$_2$, undergo chemical reactions in the presence of water and oxygen, producing nitrite and nitrate anions in the liquid phase. To the best of our knowledge, there are no direct measurements of nitric oxide and nitrogen dioxide in liquids exposed to plasma. Experimental detection of RNS in the liquid phase presents an important yet challenging task in order to fully understand the complex chemistry of low temperature plasma-treated liquids. A combination of synthetic organic chemistry methods with physical chemistry techniques could ultimately enable measurements of such species both in bulk liquid and in plasma/liquid interfacial layers. In this context, Bruggeman et al. in collaboration with Hiden Analytical measured dissolved $^\cdot$NO in the liquid by mass spectrometry through a porous membrane in liquid (see figure 22) [528].

One of the methods of choice to analyze elemental components in liquids is injection of aerosols into ICPs, vaporization of the aerosol and use of OES or mass spectroscopy to measure the dissolved components. This method is able to detect metallic and some non-metallic elements in concentrations as low as parts-per-trillion (ppt). Mass spectroscopy also enables isotopic speciation. However, this technique is not able to differentiate between the valence state of metals (e.g. Cu$^+$ or Cu$^{2+}$), which might be necessary for accurately identifying reactions in the bulk of the treated liquid. A complementary method to provide information on valence states could be electrospray ionization with mass spectroscopy (ESI-MS) [9].

Many researchers are interested in the chemical action of reactive species on complex chemical components in the context of plasma initiated degradation of pollutants in water, usually by oxidation. Among the analytical techniques used to study and characterize the liquid phase in this area, high performance liquid chromatography (HPLC) coupled to mass spectrometry provides keen insights on the mechanism of degradation [531]. Identifying the reaction intermediates also gives indirect information on the species involved in the oxidation process. For example, the detection of nitrated intermediates in the phenol decomposition by air plasma gives an indication of the nitrating agents produced by the plasma [488]. However, this indirect way to detect reactive species must be used carefully. For example, cis, cis-muconic acid is sometimes cited as a specific product of O$_3$ reactions with phenol. However, muconic acid can also be produced by breaking the aromatic ring of catechol, which is formed by the reaction of phenol with $^\cdot$OH [532, 533]. Thus, the correlation of O$_3$ initiated oxidation with the presence of cis, cis-muconic acid should be made with care.

HPLC enables separation of each component of the solution and mass spectrometry provides the molecular mass and, most importantly, the structure of each component detected through tandem MS/MS experiments. So by mapping the various reaction intermediates it is possible to infer the pathway of the degradation of pollutants. Often ions with higher m/z ratio than the molecular ion of the parent compounds are revealed. It is not always straightforward to identify these structures. In fact, heavy ions can be produced by the addition of O atoms to the molecule [534] or by oxidation and rearrangement of the molecule [535]. The formation of coupling products is also possible but these are thought to only be products of the Fenton process [536]. Nuclear magnetic resonance (NMR) spectroscopy can be used to identify many stable chemical species formed from complex mixtures of organic compounds from plasma–liquid systems [537].

In conclusion, there is great need for specific analytical techniques for detection of chemical species produced by plasmas in liquid environments. However, analytics of plasma induced chemistry in aqueous liquids are sensitive to the complexity of the resulting solution containing organics, impurities, or species of high ionic strength. These conditions significantly influence selectivity, sensitivity and precision of the analytical methods. Diagnostics of long-lived products can be performed by selecting the most suitable analytical procedure and eliminating possible interferences by fixation of liquid samples by buffers, radical quenchers or other modifiers. Nevertheless investigators should always keep in mind that adding chemicals to detect species might significantly alter the chemical balance between species, particularly when the probe reacts with the molecule it detects. In many cases the measurements interfere with the solution under study.

On the other hand, in situ diagnostics of short-lived species in plasma treated liquids constitute a great challenge. In addition to the direct quantitative measurements such diagnostics provide, indirect analytical methods which are based on chemical probes of radicals (e.g. spin traps using EPR, fluorescence dyes for ROS, detection of specific products by chemical probes) show great potential for the analysis of decay kinetics and reaction pathways of long-lived products in plasma treated liquid.

While the selectivity of a probe against long-lived reactive plasma species, such as ozone or hydrogen peroxide, can be studied, selectivity experiments against short lived reactive species are more complicated because of the lack of a readily available quantitative source of these species. These species are traditionally created chemically and the conditions required to synthesize these species may also affect the probe itself. It may also be problematic to detect small amounts of a reactive species in the presence of large quantities of other reactive species because the technique does not have infinite selectivity. It is often the minority species that has a major effect on, for example, plasma induced biological processes.

While probe characterization is often conducted under well-defined and controlled conditions, the calibration may not apply to plasma induced processes. For example pH and temperature are likely to change during the experiment and may have significant spatial variation [62]. There are no guidelines on how to account for these variations when making in situ measurements. Some probes, however, have broad pH stability [487] and, therefore, may be more suited for scenarios in which pH changes are expected to occur. Attention should also be given to the reactivity and stability of the reaction products of the probe molecules. For example, chemical probes designed for ozone detection may yield fluorescent products that could undergo further reactions with ozone (or other reactive plasma species) thereby challenging quantitative analysis [538].
measurements of the macroscopic quasi-steady/equilibrium

tion we will not discuss conventional techniques that allow
cules from the liquid surface [156, 541, 542]. In this sec-
rely predominantly on either the scattering of light or mol-
tools have been developed for studying liquid surfaces which
directly at the surface. Despite these challenges, diagnostic

tional surface science of solids where most reactions occur
surface. There are few analogues to these conditions in tradi-
which depends on the rate of chemical reactions beneath the
depth, often characterized by the reaction-diffusive length,
face on nanosecond timescales leads to dynamic surfaces that

terface directly through a range of surface sensitive techniques.
Alternatively, the kinetics of processes occurring at the interface
can be inferred from measuring changes in gas or liquid phase
composition. One widely used technique to probe gas–liquid
exchange of reactive and non-reactive species is the droplet-
train approach [156, 541]. Droplets of \(\approx 100 \, \mu \text{m} \) diameter are

generated in a train by a vibrating orifice aerosol generator. The
derpletion in the gas phase concentration of trace species is
probed by tunable diode laser infrared spectroscopy over a time
extending up to 20 ms. By varying either the interaction time or
the size of the monodisperse droplets, the gas-phase depletion
and the uptake coefficient characterizing the kinetics of gas-par-
ticle exchange across the interface can be inferred. The kinetics
of interfacial exchange have been studied for a wide range of
soluble species on aqueous, organic and sulphuric acid droplets
[156]. In a variation of this technique, the depletion of a gas
phase species can be measured by mass spectrometry or optical
spectroscopy to study the uptake of non-reactive and reactive
species by aqueous, organic and inorganic crystalline monodisper-
se or polydisperse aerosols over seconds or minutes [541].
When coupled with end-of-the-line sample collection and analy-
sis by techniques such as soft vacuum ultraviolet photons, the
chemical processing that occurs through gas–liquid exchange of
radicals including \(^*\text{OH}\) can be characterized [543].

Studies of reactive chemistry have also been performed on
single particles held in optical or electrodynamic traps with
measurements of uptake coefficients, product branching and
the physicochemical properties of the processed particle.
Often these measurements have concentrated on ozonolysis
chemistry of droplets containing olefinic bonds [544]. With
the high precision in size and refractive index enabled by cav-
ity enhanced Raman scattering from trapped droplets or from
angular light scattering profiles, the kinetics of water trans-
port can be probed. These techniques extend to measuring the
kinetics of the condensation or evaporation of sub-nanome-
ter layers of water at the surface of an aqueous droplet (see
figure 23) [545]. The influence of surfactant monolayers on
the kinetics of transport across the liquid–gas surface has been
studied on single particles, demonstrating that monolayer cov-
erages of a surface can significantly impair transport through
the interfacial region [546]. Evaporation kinetics from a liquid
surface have also been measured using liquid microjets. For
example, Saykally et al have inferred the evaporation coeffi-
cient of water from an aqueous surface by measuring the
time-dependence of the temperature of the jet during evaporative
cooling using Raman thermometry [547]. By coupling a
liquid microjet into the spraying chamber of an electrospray
ionization mass spectrometer, the mechanisms and product
branching of interfacial reactions can be studied [548].

Although studies on droplets or jets enable surfaces to
be readily renewed, measurements of uptake coefficients
have been made on flat surfaces, again typically by measur-
ing depletion of gas phase reactant concentrations [156].
These techniques have been used to probe reactive uptake
coefficients of radical species such as \(^*\text{OH}, \text{HO}_2^-\) and \(^*\text{NO}_3^-\).
Donaldson et al used LIF coupled with surface active chromophoric molecules such as polyaromatic hydrocarbons (PAHs) to investigate chemical processes at flat liquid surfaces. By exciting PAHs in the UV with a glancing angle laser probe beam, the fluorescence spectrum provides a direct signature of the local polarity of the probe chromophore at the interface [549]. By measuring the time-dependence of fluorescence intensity, the kinetics of reactant adsorption (e.g. ozone) at the liquid–gas surface can be inferred, with the kinetics often consistent with a Langmuir–Hinshelwood mechanism.

These studies are typically performed under well controlled conditions. Plasmas deliver a variety of reactive neutral species to surfaces and in addition to depositing charge. In most cases a large flux of (V)UV photons is present, particularly for plasmas in contact with the interface. This complex mix of species not only reacts in the gas phase but is unlikely to selectively react on assistant-agents such as dyes or chemicals used to track chemistry in the liquid phase. Studies of well-defined transfer from gas-to-liquid phase by examining, for example, droplets of well-defined sizes in a homogeneous gas composition could be a point of departure for the plasma community. Valuable work has also performed in the area of electrospray mass spectrometry.

To characterize the equilibrium composition of the liquid–gas surface, a number of advanced optical tools are available, including photoelectron spectroscopy, non-linear second harmonic generation (SHG) and sum-frequency generation (SFG) spectroscopy. These methods rely on the fact that for centro-symmetric materials such as water or air the second order susceptibility, $\chi^{(2)} \neq 0$. At the interface between the two materials, the symmetry is broken yielding $\chi^{(2)} = 0$. SHG or SFG signals can then be produced. Their surface selectivity can be sub-monolayer. However, with a large number of species and with high electric fields present at the interface, gaining quantitative information using these techniques may be difficult. On the other hand, electric field-induced SHG has been widely used to probe hyper-polarizabilities of molecular species and may be a useful tool to probe local effects induced by the electric field at the plasma–water interface [550]. SFG experiments could be used to probe the hydrogen bonding structure of water at the interface. Individual species may potentially be probed by SHG or SFG tuned to specific electronic or vibrational transitions to gain some species selectivity through resonance-enhancement. A well-studied example also of interest to the plasma community is solvated electrons [224]. Recently, total reflectance absorption spectroscopy has been used to measure solvated electrons at a plasma–liquid interface [199]. Using SFG, Kondo and Ito recently investigated the effect of an externally applied electric field on the orientation and polarization of water molecules at an insulator-water interface [551].

X-ray photoelectron spectroscopy (XPS) can be used to probe, as a function of depth, the near-surface composition of liquid microjets or a static sample. These data can yield insights on the partitioning of anions and cations within the first few nm of the surface [552, 553]. Ammann and coworkers extended this approach to measure composition profiles over depths of a few nanometers for ice surfaces using ambient pressure XPS and more recently for the liquid–vapor surface of aqueous salt solutions of formic acid [554]. When measurements over a few nanometers are compared with measurements of the top surface layer by non-linear spectroscopy, a comprehensive picture of the liquid–gas surface emerges. Indeed, it is possible to directly probe the evolving composition of the surface, demonstrated by a monolayer of oleic acid reacting with ozone adsorbing from the gas phase [555].

To complement these spectroscopic tools, it is now possible to directly measure the interaction of molecules colliding with a liquid surface using molecular beam techniques. Nathanson and coworkers directed a beam of molecules (e.g. HCl, DCI) onto a constantly renewed liquid surface on a rotating disk [556]. They measured the branching of inelastic scattering, trapping and desorption of molecules. In such measurements, the incident molecules have a kinetic energy considerably higher than the surface temperature. Measurements must be made on liquids of low volatility such as concentrated sulphuric acid or liquid glycerol. Minton [557] and McKendrick [558, 559] examined the collisions of superthermal oxygen atoms and hydroxyl radicals with a squalane surface. They reported quantum state resolved product distributions, a technique that can also be used to study reactions on self-assembled monolayers.

Figure 24. Liquid volume treatment by a surface DBD leading to the formation of NO$_2$ in the liquid as shown by the formation a magenta colored azo dye. No flow is present in this case so the redistribution of the dye is due to diffusion of NO$_2$ and/or the dye in the liquid volume. Reproduced with permission from [293], copyright 2011 IEEE.
Electro-chemical techniques capable of probing interfacial processes are also possible diagnostics [560]. Electrochemical techniques consist of measuring potentials, current and charge based on inserting electrodes in the system of study, techniques common in the field of plasmas. However the cathode or anode voltage drops when a plasma is in contact with the liquid are of the order of 200–600 V and might dominate the typical potentials of 1 V for electrochemical processes.

In conclusion, while a large set of diagnostics is available to measure individual processes that are important to plasma–liquid interactions, the inherent complex conditions complicate their implementation. Nonetheless, well-controlled techniques assessing fundamental properties such as accommodation coefficients and chemical reactions at liquid gas interfaces will be valuable in providing the fundamental data required for models of plasma–liquid interactions.

7.5. Diagnostics for macroscopic gas–liquid transport and interfacial dynamics

Measuring flow and transport of species at the gas–liquid interface is extremely challenging. Flow patterns are often measured by laser scattering or fluorescent probe techniques. The change in refractive index between the liquid and the water phase leads to scatter and diffraction which may complicate accurate interfacial measurements. The highly dynamic plasma–liquid interface causes exceptional challenges for high resolution gas and liquid phase diagnostics. Deformation of plasma–liquid interfaces has been studied using fast imaging, including Taylor cone formation [561, 562], wave phenomena at the gas–liquid interface, and boiling phenomena induced by plasma [295, 563].

Gas and liquid phase transport have been measured using different approaches. In both the gas and liquid phase, Schlieren [467], shadowgraphy [564], particle imaging velocimetry (PIV) [311] and fluorescence measurements of a molecular probe added to the flow [302] have been used. The last two techniques enable spatially resolved velocity flow field measurements while the first two techniques are based on optical differences and provide information on the flow structure. In the liquid phase, scattering from particles [311, 565] and on microbubbles [301] can be used to measure flow fields. Note that fluorescent probe molecules might not be compatible with plasma treatment as they could be oxidized and lose their specific fluorescent properties.

Several studies have been performed by observing discoloration of dyes or adding a non-colored chemical which reacts with plasma produced species to create a colored reaction product. An example is shown in figure 24. Similar techniques have also been applied in sonochemiluminescence [566]. pH sensitive dyes have also been used [293, 567]. It should be stressed, as indicated above, that selectivity of the chemical process should be carefully checked.

Only a limited number of studies on gas and liquid phase transport for plasma–liquid systems have been reported in the literature. This is an important area for understanding plasma–liquid interactions, particularly for understanding the transfer of reactivity originating in the plasma to the liquid phase in small volumes of liquids or thin liquid layers.

8. Modeling

8.1. Introduction

The modeling and simulation of plasma–liquid interactions is challenging from a number of perspectives. The first is the large dynamic range in collisionality between the gas phase plasma and the liquid phase plasma which challenges the numerical integration of gas and liquid phase processes. The second is the uncertainty in reaction mechanisms, less so in the gas phase and more so in the liquid. The third is the manner of transport of gas phase species into the liquid and from the liquid into the gas phase. In
the discussion that follows, we will discuss two classes of models—those addressing gas phase plasmas-interacting with liquids and those addressing plasmas-in-liquids. In spite of the challenges for modeling plasma–liquid interactions, significant progress has been made addressing the coupled systems of atmospheric pressure plasmas and liquid phase reactivity [61, 62, 188, 323, 568].

8.2. Gas phase plasmas interacting with liquid

In this section we discuss the case when plasma is actively generated in the gas phase—the voltages and electric fields being applied are too small to sustain or to independently generate plasma in the liquid. The reactive species are first produced in an atmospheric pressure plasma in the gas phase, these species transport to the plasma–liquid interface, penetrate through it and subsequently react in the liquid.

Transport through the plasma-liquid interface in principle occurs both from the plasma into the liquid, and from the liquid into the plasma. It is common to limit the transport of neutral species into (and out of) the liquid by some variation of a Henry’s law equilibrium. In a spatially dependent model, Henry’s law can be used to limit the rate of diffusion from the gas phase into the top layer of the liquid (or out of the liquid if the neutral species is over dense in the liquid) based on the densities of the neutral species directly above-and-below the plasma-liquid interface. This technique seems reasonable for quasi-steady state modeling since the asymptotic value at long times provides the required equilibrium densities. It is not clear if this approach is accurate during transients and on short time scales. Kinetic or molecular dynamics modeling would provide insights into the applicability of the Henry’s law approach [569].

These techniques best apply to a species that has a small density in the liquid and a large density in the gas phase, such as dissolved O2 or CO2. In this case, the net flux is usually from the gas phase through the plasma–liquid interface into the liquid. This is also the case for minor species that are produced on a transient basis in the gas phase, such as *OH, H2O2 or HNO2. Since the densities in the gas phase are much larger than their equilibrium values in the liquid, the net transport is from the gas phase into the liquid. Once in the liquid, many of these species will react and be converted into other species, and so their effective densities are small. So the net flux continues to be from the gas into the liquid.

The transport of major species from the liquid into the gas phase, such as the water itself, is typically addressed from the thermodynamic perspective of evaporation—the liquid has a vapor pressure appearing as a diffusion source of the molecules composing the liquid into the gas phase. This results in there being a layer of gas adjacent to the liquid that is saturated with the vapor of the liquid. This saturated layer is very important in gas phase plasmas interacting with a liquid as plasma generated radicals and ions react with the saturated water vapor on top of the liquid prior to reaching the surface of the liquid. The reactions include electron impact dissociation and ionization that can produce, for example, *OH in close proximity to the water, as well as charge exchange reactions that either hydrate the gas phase ions or convert most gas phase ions into water ions [445]. An example of the calculation of the gas phase *OH and H2O+ density produced in a DBD interacting with a liquid layer with and without considering evaporation from the liquid layer is shown in figure 25. This figure clearly illustrates the large impact of evaporation on the plasma kinetics.

The just described method of addressing the plasma liquid interface does not necessarily acknowledge physical or chemical barriers or enhancements to transport on either side of the gas–liquid interface. There certainly are classes of hydrophobic molecules that resist penetration through the plasma liquid interface or surfactants that will be attracted to the interface. Charged species and photons may require a specific treatment (see sections 3 and 4). An alternative method of modeling the plasma-liquid interface, and perhaps better prepared to address these physio-chemical effects, is the use of an adsorbed layer. That is, instead of species directly transporting from the gas into the liquid, these species first adsorb onto the liquid surface if coming from the gas phase or are attracted to the interface if coming from the liquid phase. Adsorbed
species then transport into or out of the liquid based on their own interfacial transport properties. Reactions can also occur between adsorbed species and between gas phase and adsorbed species. This technique is analogous to the method used to model plasmas in contact with solids where gas phase species can chemisorb or physisorb, and can be mobile on the surface. This technique has been fully developed in the modeling of the uptake of gases into aerosols for the investigation of atmospheric chemistry [159].

The interaction of a gas molecules or ions with surfaces of aerosol particles or bulk liquid involves multiple transport and kinetic processes [156]. An explicit approach describing such processes [157, 159] is shown in figure 9, which is a schematic of the key processes and flux terms used to describe gas uptake by atmospheric particles. Heat flux can also be included in this framework. Note that in most cases in aerosol chemistry except water condensation, a temperature change in the aerosol particles is negligible, as aerosol particles are well buffered by surrounding gases [140, 159].

Two examples of modeling the transfer of *OH and H₂O₂ in a DBD plasma and of ROS in an He–O₂ plasma from the gaseous plasma phase to the liquid interface are shown in figures 26 and 27 respectively. These results clearly illustrate the limited penetration of short lived species such as *OH, O₂•− and HO₂ and their conversion into H₂O₂. Note that in the presence of air, the kinetics becomes considerably more complex than shown in figure 27.

In principle, the same modeling techniques can be used to address plasmas in intentionally produced macroscopic bubbles that have been injected into the liquid as used to model gas phase plasmas [114, 570]. In both cases, there is distinct gas phase plasma in contact with a liquid, albeit with a different, more tightly coupled geometry. The deformation of the bubble by plasma forces (which could also occur for a non-curved gas–liquid interface) is an important consideration in these systems and so should be addressed. Plasmas can also be sustained in bubbles that are thermodynamically produced in the liquid through heating the liquid. Here, the phase change between the liquid and the gas must be included in the thermodynamics and the model becomes a truly multiphase model. However, once the bubble is formed, the plasma is sustained in the gas phase of the bubble. From a modeling perspective, this is very similar to the injected bubble case.

8.3. Plasmas in liquids

Plasmas in liquids refer to those systems where the voltage, electric fields or other conditions enable the formation of plasma directly in the liquid phase. Although technologically very important from many perspectives, the fundamental processes of initiating and sustaining plasma in liquids are poorly understood.

Plasmas in bubbles in liquids are an important subset of plasma in liquids. Again, there are two approaches that require different modeling techniques. The first technique for self-sustained plasmas in liquids relies on the existence or formation of bubbles to provide a low density in the liquid phase which, for a given electric field, amplifies the local E/N to the degree that a plasma can be sustained. The initiating bubbles are believed to be only a few microns in size, and are either pre-existing or are produced by the electrostriction effect due to large electric fields [30, 571, 572]. It is still unclear how these forces can grow a large enough bubble to provide the critical pd (pressure × diameter) that will enable avalanching of plasma in the bubble. Modeling the formation of the micro-bubbles requires advances in our understanding of this process. There may be techniques that can be adapted from the modeling of cavitation in CFD. The second class of plasma in liquids is the self-sustained discharge in liquid in the absence of bubbles. This discharge is produced by applying a large enough electric field that even with the liquid density, the E/N is large enough to sustain the plasma [573]. Although the electron and ion transport coefficients of the in-liquid self-sustained discharge are poorly known, the mechanics of the modeling of this process should not be significantly different from modeling of ionization waves in the gas phase. The time and spatial scales are, however, quite different and may require different mathematical techniques. The groups of Joshi and Schoenbach performed pioneering work in this area [34, 574], as have Locke and Thagard [38].

8.4. Reaction mechanisms

The modeling of plasmas interacting with liquids require two somewhat independent sets of reaction mechanisms—for gas phase and for liquid phase properties. The reaction mechanisms are in principle independent but are interdependent with respect to transport through the plasma-liquid interface. If the plasma-liquid interface is addressed as an adsorbed layer, then a third reaction mechanism is required to describe the reaction kinetics (and transport) of species resident into, out of and in the adsorbed layer. Many of the relevant mechanisms and data sets are discussed in sections 3 and 6.

In modeling the reaction mechanism in the liquids, it is important to include only the elementary equations associated with the chemical species of interest [575]. In the modeling of gas phase plasmas, there is a generally accepted format for rate coefficients based on fundamental cross sections and distribution functions. The situation is less well defined in liquids due in large part to the difficulty of making quantitative measurements in real time, a capability that is available for gas phase measurements. Due to the hugely different densities of the liquid, for example water, compared to the reactive species, it is often assumed that water molecules are an infinite reservoir whose density is not affected by the chemical reactions. In these cases, reactions quoted in the literature often do not have a mass balance between reactants and products because of the assumed availability of water molecules from the infinite bath.

When one refers to several different sources and data bases to develop reaction mechanism, care must be taken to make sure that the quoted reactions are not redundant or do not include combined reaction pathways of other elementary reaction pathways. The status of the reaction mechanisms
for the liquid is discussed in section 6. To build a computational model based on such macroscopic equations for reactions and diffusion, using correct reaction rates and diffusion coefficients [576] (as well mobility coefficients) is essential to obtain reliable computational results. For some reactions (especially those involving organic molecules), reaction rates may not be available. One way to estimate such reaction rates may be molecular based simulation such as quantum mechanical calculations for multiple molecules.

Very often rate coefficients are quoted for buffered solutions in which, for example, the pH is constant. In these situations, it is usually assumed that there is an infinite reservoir of, for example, H_3O^+ and NO_3^- in the case of a nitric acid buffered solution. (Note that in much of the electrochemistry literature H_3O^+ is referred to as H^+ with the implicit assumption that the H^+ is actually hydrated. In this review, we use the H_3O^+ notation.) Recall that the pH of a solution is typically given by pH = −log_{10}[H_3O^+] where [H_3O^+] is the molar concentration (mol l^{-1}). So a pH dependent rate coefficient is actually a multi-body rate coefficient where the constant density of H_3O^+ is suppressed. Since plasma treatment of liquids can significantly change the pH of the water through formation of H_3O^+, reaction rate coefficients that depend on pH should be expressed as a function of hydronium [H_3O^+] to make those rate coefficients implicitly dependent on the current conditions. Many reaction rates are only provided for specific pH values.

For the majority of models of plasma liquid interactions, non-equilibrium continuum techniques are likely adequate. That is, kinetic algorithms are not necessarily required. This is certainly the case in the liquid. The exception is in the sheath at the surface of the liquid where the plasma produced ionization wave strikes the surface. The E/N produced in the sheath at the surface of the liquid may exceed thousands of Td (1 Td = 10^{-17} V cm^2)—electric fields of hundreds of kV cm^{-1}. For positive discharges, this large electric field at the liquid phase boundary may produce moderately energy ions (up to 10 s of eV) onto the liquid surface in spite of the short mean-free-path at atmospheric pressure. The availability of reaction rate coefficients for ions of these energies onto water is very limited. In view of uncertainties in many of these rate coefficients it is important to perform uncertainty and sensitivity analysis of complex chemistry reaction sets [577].

8.5. Modeling techniques

Again, there are at least three regions of interest in modeling plasma–liquid interactions. The first addresses the gas phase properties—plasma generation, gas flow, plasma kinetics. The degree of sophistication of this modeling varies from global (0D) to multidimensional. Fortunately, there have been intensive investigations into the reaction mechanisms for humid air plasmas, or plasma jets consisting of rare gases flowing into humid air, and so there is a maturing baseline for the gas phase portion of the model. In principle, these gas phase models

Figure 27. Gas and liquid phase reactant densities from an atmospheric pressure plasma sustained in He/O_2 in contact with water. (a) Fluxes of ROS to the surface of the water for gas phase O_2 concentrations of 0–10%. (b) In liquid densities of ROS as a function of distance of penetration into the bulk liquid for He/O_2 = 99/1. (c) The pathway chain map for key ROS is shown for 10 mm into the liquid. The percentage for each pathway indicates the contribution for generation or loss of the species. Reproduced with permission from [188], copyright 2014 Springer.
are directly applicable to the investigation of plasma–liquid interaction given the proper boundary conditions between the plasma and the water.

The second region addresses transport and reactions within the liquid. Addressing transport within the liquid is problematic since there are multiple spatial scales that must be addressed. For example, a subset of the gas phase species transporting into the liquid have short reaction lengths, perhaps as small as a few microns, whereas the depth of the liquid may be hundreds of microns (liquids covering wounds) to tens of cm. In principle, resolving this dynamic range is only a matter of computational resources. However, approximations may capture this surface-layer reactivity without actually resolving the spatial lengths. An even shorter spatial scale is that of the electrical double layer in the liquid and sheath in the gas phase [578]. The electrical double layer is conventionally thought of as forming at the surface of a metal electrode immersed in an ionic liquid. The thickness of the electrical double layer may be only 1 nm. However, an electrical double layer will likely occur at the plasma liquid layer as well. The water will have a finite dielectric relaxation time and so have dielectric properties which produce some charging of the surface of the liquid or near the surface layer. The sheath on the gas plasma side of the plasma–liquid interface will bring a high potential and a space charge region to the proximity of the surface. These conditions are, in principle, the same as for an electrode in an ionic liquid, and so an electrical double layer will likely form. Coupling these scales in models will be challenging although considerable progress is being made [579].

The most basic approach to modeling the plasma-induced liquid phase chemistry is the well-stirred reactor approximation where convective mixing of the liquid is sufficiently rapid that reactants entering the liquid are fully mixed. Although computationally convenient, it may be difficult to properly represent the species in the thin reactive layer below the plasma liquid interface. The next more sophisticated approach is to spatially resolve transport and reactions within the liquid with transport being represented by diffusion. Since the Peclet number is typically large in liquids, a model in which transport is limited to diffusion which produce some charging of the surface of the liquid or near the surface layer. The sheath on the gas plasma side of the plasma–liquid interface will bring a high potential and a space charge region to the proximity of the surface. These conditions are, in principle, the same as for an electrode in an ionic liquid, and so an electrical double layer will likely form. Coupling these scales in models will be challenging although considerable progress is being made [579].

The third region of interest is the interface between the gas phase and the liquid. The modeling technique used here depends on the physical models adopted. In the absence of an adsorbed layer, transport through the plasma–liquid interface between the gas phase and liquid phase depends primarily on the differences in densities between those phases, and the condition dependent transport probabilities. When using an adsorbed layer, the plasma liquid interface is represented by separate algorithms that account for the adsorbed density of species at the plasma liquid interface. In either case, the deformation of the surface of the liquid should be accounted for.

The sophistication of models of the gas phase and liquid plasmas then dictate the manner in which the electric field is derived. In spatially resolved models of the gas phase plasmas, the electric field is produced by either directly solving for the electric potential from Poisson’s equation, or derived through current continuity and a quasi-neutrality approximation. The latter requires some form of ambipolar transport. In principle, the same techniques can be extended to the liquid phase. In the case of solving Poisson’s equation, continuity equations are derived for charged particle transport in the liquid which includes contributions from drift in the electric field. A charge density is derived and this charge density is used to solve Poisson’s equation. In this technique the appropriate polarizability of the constituents of the liquid need to be accounted for in order to provide the permittivity required to solve Poisson’s equation. Although this technique may be computationally intensive, it is the least ambiguous. The alternative methods present challenges. In most alternative methods of gas phase plasmas, ambipolar enhanced transport coefficients are derived for the ions. Charge neutrality is then maintained by requiring that the density of electrons equals the charge density of the sum of all ions. This is not particularly ambiguous in the gas phase where one can be assured that electrons exist with some reasonable density in regions where the plasma is being actively produced, and that electrons are the most mobile species in the absence of externally applied magnetic fields. This is not the case in the liquid where electrons rapidly solvate and undergo reactions. There is no guarantee that the solvated electron will have either the highest mobility or an appreciable density throughout the liquid plasma. It is therefore unclear that a single species can be singled out (as electrons are in the gas phase) to be the charge balancing species. In the liquid, a fully self-consistent ambipolar transport algorithm would be required. This involves a matrix solution of the charge and current conserving transport coefficients whose solution provides the local electric field consistent with the quasi-neutral approximation.

The just described method presupposes that the plasma-induced charge density produces a large fraction of the ions in the liquid. In heavily buffered solutions or previously conductive solutions, the perturbation to the charge density by the plasma may not be large. In that case, the local electric fields can be produced by current continuity based on the initial conductivity of the buffered solution.

With all of these challenges, advances are required in modeling of plasma interactions with the liquid–gas interface. The interactions become more complex in the presence of fluid motion, and if the flow is turbulent, the variety of
length and time scales means that simple descriptions may be inadequate in capturing the underlying physio-chemical phenomena [580, 581]. Another challenging dynamic to model, depending on the momentum of the gas and liquid phases, is the movement or displacement of the liquid–gas interface. In the simplest of cases—low Reynolds numbers and low rates of mass-transfer—a momentum or force balance can provide a relatively accurate prediction of the interface location, stationary or periodic. However, if the plasma stream or jet is turbulent, the location and displacement of the interface can be intermittent and difficult to both describe and predict [582].

Turbulence is typically not included in most plasma–liquid interaction models. Modeling the effects of turbulence requires the treatment of four phenomena: the effects of turbulence on the fluid (in each phase), on reactant transport, on the chemical reactions, and on the liquid–gas interface. The majority of turbulence models in use today are based on Reynolds-averaged Navier Stokes (RANS) formulations. RANS approaches have their limitations, for example, when periodic motion is present as may occur at the plasma–liquid interface [583]. In these cases, either direct numerical simulation (DNS) or large-eddy simulation (LES) may be appropriate for plasmas near the liquid–gas interface [584]. Turbulence has been shown to increase both large-scale mixing, via entrainment [585], and small-scale mixing, via vortex bending and stretching [586]. There are a number of techniques that model the effects of turbulence on chemical reactions [587, 588]. One of the more general approaches is probability-based methods [589].

The transition between laminar and turbulent flow has been investigated extensively in thermal arcs, torches and thermal arc-jets [590–592]. Sophisticated 3D models have been developed which combined computational fluid dynamics, electromagnetics, plasma-surface interactions and mixture-dependent thermodynamics [590, 591]. With the exception of the thermal arcs being well represented by local-thermodynamic-equilibrium, there are many similarities between the turbulence experienced in thermal arcs and those observed for non-equilibrium plasma jets.

Simulation of liquid–gas interfacial flows is a significant challenge due to the evolving, non-regular shapes and moving boundaries across which density changes by several orders of magnitude [593]. Both Lagrangian and Eulerian methods have been extensively used in the past for modeling multiphase interfacial flows [594]. Two representative methods are the volume of fluid (VOF) and level set (LS) approaches [595–597]. The importance of small deformations (as electric field enhancing spots) and the required accuracy of the interface tracking might complicate the implementation. Current state-of-the-art turbulent flow simulations have significant difficulty resolving liquid gas interfacial dynamics. These interfaces are thin and rapidly evolve. The sequence of images in figure 28 shows the development of the Kelvin-Helmholtz instability along the interface of a temporal, planar shear layer. Temporal shear layers are regularly used to investigate turbulent flow phenomena as they contain many of the dynamics present in flows undergoing transition to turbulence while having a relatively small and compact computational domain [598].

The interaction of atmospheric pressure plasmas with evaporating liquids is not restricted to biological and environmental applications. There is a large knowledge base of such interactions in the context of arc welding of metals. In these applications, there is usually a pool of melted (liquid) metal at the intersection of the arc with the solid work piece which produces a pool of metal vapor which in turn evaporates into plasma. The metal vapor significantly alters the conductivity and transport coefficients of the arc. Sophisticated 3D models have been developed of these processes [599].

9. Conclusions and roadmap

A large variety of plasmas interacting with liquids have been investigated. There is surprisingly little knowledge available, particularly on reactive species densities, for direct discharges in liquids, discharge in bubbles and aerosol containing plasmas. A detailed framework of species transfer at the gas–liquid interface has been developed for investigation of aerosols that could be an excellent starting point to implement this method for plasmas interacting with liquids. Charged species transfer and photon-induced effects need to be included in this framework. The plasma community can benefit from established work in the field of electrochemistry, photolysis and advanced oxidation technology in this process.

We have reviewed the fluid dynamics, heat and mass transfer that occur during plasma–liquid interactions. We included discussion emphasizing the extremely dynamic plasma–liquid interface where Taylor cones, capillary waves and dimples may occur. Since the ratio of advective transport to diffusive transport is usually large in the bulk plasma, plasma-induced liquid convection plays an important role in the gas phase plasma reactive transfer to the liquid phase.

There are good starting points for developing kinetic models of the chemistry in water vapor containing plasmas. The experimental validation of current modeling efforts is limited and a critical review on the species transfer from the gas to liquid phase particularly for ions is needed.

Several data needs are highlighted in this manuscript including:

- Electrons colliding with relevant reactive species such as *OH and H2O2
- New data and improvements to existing data for ion reactions.
- Temperature and pressure dependence of neutral reactions.
- Charged species transfer across the gas–liquid interface including electron-induced reactions and energy transfer.
- More extensive information on the pH, temperature and electrical field effects on liquid phase reactions.
- Rates for heavy particle reactions with fast atoms and vibrationally excited H2O and *OH.

An impressive set of gas phase diagnostics are available that can measure many plasma parameters. Due to the presence of unknown water vapor gradients in many of the discharges of interest, many diagnostics such as LIF require detailed excited state lifetime measurements and collisional transfer models.
Figure 28. This sequence of images [600] shows the evolution of a multiphase temporal shear layer obtained from a model using a Lagrangian VOF approach [601]. Vectors point from the liquid into the gas and reflect instability the development of the Kelvin Helmholtz. While surface tension may stabilize the short wavelength instability, longer waveforms appear, stretch and distort the surface, creating new interface. Over the time interval shown vortices form and a transition to a fully turbulent interface occurs.

The interpretation of optical emission spectra remains a challenge due to complex kinetics, high collisionality and lack of some relevant cross sections. Direct discharges in liquids and discharges in bubbles are almost unexplored by advanced diagnostics due to their limited optical accessibility and partly stochastic nature.

The diagnostics of plasma-induced (often short-lived) reactive liquid phase chemistry are currently a great challenge because most available techniques are not selective or influence the plasma induced liquid phase chemistry. An initial set of reference analytical methods for commonly produced species have been proposed. However, further standardization of the liquid phase detection techniques for plasma induced liquid phase chemistry is urgently needed.

Surface processes have been extensively studied by diagnostics in the field of aerosols. However these diagnostics are usually performed under well-controlled conditions that do not occur in most plasma discharges. An extensive suite of diagnostics to assess macroscopic transport is available from different fields. A more extensive use of these techniques in the study of plasma–liquid interactions is important to further advance our understanding of plasma-induced liquid phase chemistry.

In spite of many challenges for modeling plasma–liquid interactions, significant progress has been made in recent years addressing the coupling of gas phase plasma kinetics with liquid phase reactivity. Direct liquid phase discharges remain a challenge and will require advances in our understanding of discharge ignition and liquid phase ionization processes in order to accurately model these processes. Models that couple laminar and turbulent gas flow, and multiphase interfacial flows have been developed for thermal plasmas. These approaches need to be extended to non-equilibrium atmospheric pressure plasmas.

In recent years, research on plasma–liquid interactions has been motivated by the growing field of plasma medicine which has led to the investigation of plasma jets and dielectric barrier discharges with liquids. These systems encompass highly dynamic and often stochastic-like behavior in space and time combined with complex flow patterns. Many research groups around the world have developed their own plasma sources. Establishing standards for a few reference plasma–liquid systems would foster exchange and comparison of data and so deepen our understanding of plasma–liquid interactions. In addition, the use of ionic liquids enables investigation of plasma–liquid interactions at reduced pressure for diffuse glow discharges without significant gas heating. This could provide an important simplified reference system for plasma–liquid interactions although not for aqueous solutions.

In conclusion, the complex and highly dynamic plasma–liquid interface provides a wealth of challenging, fundamental and interesting scientific questions. Addressing these challenges and questions would benefit from a coordinated effort to further develop and implement state-of-the-art diagnostics and modeling. These efforts will enable the plasma community to more rapidly exploit plasma-induced chemistry in liquids for emerging applications such as plasma medicine, material synthesis and environmental stewardship. The resulting increased understanding will lead to new applications and enable us to tackle many societal challenges related to energy, environment and health.

Acknowledgments

This manuscript originated from discussions at the Lorentz Center Workshop ‘Gas/Plasma–Liquid Interface: Transport, Chemistry and Fundamental Data’ that took place at the Lorentz Center, Leiden University in the Netherlands from August 4, through August 8, 2014, and follow-up discussions since the workshop. All authors acknowledge the support of the Lorentz Center, the COST action TD1208 (Electrical Discharges with Liquids for Future Applications) and the Royal Dutch Academy of Sciences for their financial support. PJB, MJK, DBG and JEF acknowledge the support of the ‘Center on Control of Plasma Kinetics’ of the United States Department of Energy Office of Fusion Energy Science (DE-SC0001319). In addition, PJB and BRL acknowledge the support of the National Science Foundation (PHY 1500135 and CBET 1236225, respectively). In addition the enormous help of Mrs. Victoria Piorek (University of Minnesota) in the formatting of the final document including the references is gratefully acknowledged.
Table A1. Overview of gas phase plasma diagnostic methods.

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Method</th>
<th>Comment</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>I, V</td>
<td>Shunt resistor, Rogowski coil, voltage dividers</td>
<td></td>
<td>[602]</td>
</tr>
<tr>
<td>P</td>
<td>(a) Current–voltage</td>
<td>(a) Used for pulsed, DC and AC discharges</td>
<td>[602–606]</td>
</tr>
<tr>
<td></td>
<td>(b) Voltage-charge</td>
<td>(b) Typically used for DBD</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(c) Thermally based power meters</td>
<td>(c) Used for RF and MW discharges</td>
<td></td>
</tr>
<tr>
<td>n_e</td>
<td>(a) Stark broadening</td>
<td>(a) Typically $n_e > 10^{20} \text{m}^{-3}$</td>
<td>[449, 607–612]</td>
</tr>
<tr>
<td></td>
<td>(b) Thomson scattering</td>
<td>(b) In situ, calibration necessary</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(c) Interferometry</td>
<td>(c) Line of sight measurement, effect of T_g</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(d) Continuum radiation</td>
<td>(d) Absolute calibration necessary</td>
<td></td>
</tr>
<tr>
<td>T_e</td>
<td>(a) Thomson scattering</td>
<td>(a) In situ (EEDF remains a challenge)</td>
<td>[608–610, 612, 613]</td>
</tr>
<tr>
<td></td>
<td>(b) Line intensity ratio</td>
<td>(b) Need of collisional radiative model, reaction rates only available for limited number of gas mixtures</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(c) Continuum radiation</td>
<td>(c) Absolute calibration necessary</td>
<td></td>
</tr>
<tr>
<td>T_g</td>
<td>(a) Rotational emission spectra</td>
<td>(a) Non-equilibrium effects possible</td>
<td>[455, 614]</td>
</tr>
<tr>
<td></td>
<td>(b) Rotational absorption spectroscopy</td>
<td>(b) Ground state diatomic molecule</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(c) Rotational LIF spectra</td>
<td>(c) Ground state diatomic molecule</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(d) Rotational Raman Scattering</td>
<td>(d) Ground state diatomic molecule</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(e) van der Waals broadening</td>
<td>(e) Atomic line with small Stark broadening at low gas temperatures</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(f) Doppler broadening</td>
<td>(f) Atomic line with small Stark broadening at elevated gas temperatures</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(g) Rayleigh scattering</td>
<td>(g) Gas density measurement, species dependent</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(h) Schlieren imaging</td>
<td>(h) Refractive index measurement</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(i) Thermal probes</td>
<td>(i) Possible interactions of plasmas with probe</td>
<td></td>
</tr>
<tr>
<td>E/N</td>
<td>(a) $N_2(C) / N_2^+(B)$ ratio</td>
<td>(a) Electron excitation should be dominant</td>
<td>[615, 616]</td>
</tr>
<tr>
<td></td>
<td>(b) CARS</td>
<td>(b) Performed in H$_2$ and N$_2$ containing gases</td>
<td></td>
</tr>
<tr>
<td>H_2O</td>
<td>(a) Absorption</td>
<td>(a) Line integrated measurement</td>
<td>[443, 617, 618]</td>
</tr>
<tr>
<td></td>
<td>(b) Raman scattering</td>
<td>(b) Spatially resolved but less sensitive</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(c) OH LIF (quenching measurement)</td>
<td>(c) Other gas molecules determine detection limit</td>
<td></td>
</tr>
<tr>
<td>N_2, O_2</td>
<td>(a) Raman scattering</td>
<td>(a) Spatially resolved</td>
<td>[610, 619]</td>
</tr>
<tr>
<td></td>
<td>(b) Mass spectrometry</td>
<td>(b) Sampling only at solid interface</td>
<td></td>
</tr>
<tr>
<td>$O^, N^, H^*, ...$</td>
<td>(a) TaLIF</td>
<td>(a) Requires calibration and quenching corrections</td>
<td>[437, 620, 621]</td>
</tr>
<tr>
<td></td>
<td>(b) VUV absorption</td>
<td>(b) Requires VUV wavelengths which are absorbed in O$_2$, H$_2$O</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(c) Mass spectrometry</td>
<td>(c) Sampling only at solid interface, interferes with cracking patterns from internal MS ionization source</td>
<td></td>
</tr>
<tr>
<td>$^\bullet NO, ^\bullet OH,$</td>
<td>(a) LIF</td>
<td>(a) Requires calibration</td>
<td>[76, 437, 454, 622]</td>
</tr>
<tr>
<td></td>
<td>(b) UV absorption</td>
<td>(b) Line integrated measurement</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(c) Mass spectrometry</td>
<td>(c) Sampling only at solid interface, interferes with cracking patterns from internal MS ionization source</td>
<td></td>
</tr>
<tr>
<td>$Ar_{\infty}, He_{\infty}, N_2(A)$</td>
<td>(a) LIF</td>
<td>(a) Requires calibration by e.g. Rayleigh scattering</td>
<td>[623–626]</td>
</tr>
<tr>
<td></td>
<td>(b) Diode laser absorption</td>
<td>(b) Line integrated measurement</td>
<td></td>
</tr>
<tr>
<td>H_2O_2 Multi-pass absorption (FTIR)</td>
<td>Line integrated measurement</td>
<td></td>
<td>[627, 628]</td>
</tr>
<tr>
<td>Positive ions</td>
<td>(a) Mass spectrometry</td>
<td>(a) Sampling only at solid interface</td>
<td>[629–631]</td>
</tr>
<tr>
<td></td>
<td>(b) LIF</td>
<td>(b) Only particular ions such as Ar$^+$, N$_2^+$ have been studied</td>
<td></td>
</tr>
<tr>
<td>Negative ions</td>
<td>(a) Mass spectrometry</td>
<td>(a) Sampling only at solid interface</td>
<td>[629, 632]</td>
</tr>
<tr>
<td></td>
<td>(b) Photo-detachment</td>
<td>(b) Requires absolute determination of n_e</td>
<td></td>
</tr>
</tbody>
</table>

Note: This list is provided as a starting reference point and is not intended to be exhaustive.
Table A2. Common plasma produced liquid phase species, their possible detection methods and scavengers with some recommendations.

<table>
<thead>
<tr>
<th>Species</th>
<th>Detection method</th>
<th>Scavengers</th>
<th>Comment</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydrogen peroxide (H₂O₂)</td>
<td>(a) Colorimetric assay by titanyl sulfate reagent producing the yellow product pertitanic acid, absorption maxima at 405–410 nm</td>
<td>Catalase</td>
<td>(a) Stable color complex, only known interferences from NO₂⁻ (elimination by azide), linear response up to mM concentration of H₂O₂</td>
<td>[484, 488, 633]</td>
</tr>
<tr>
<td></td>
<td>(b) Colorimetric/fluorometric assay by nonfluorescent reagent amplex red (10-acetyl-3,7-dihydroxyphenoxazine) producing the red-colored and fluorescent product resorufin (excitation/emission maxima 571/585 nm)</td>
<td></td>
<td>(b) Possible interferences from thiols, air sensitive, pH-dependent reaction, high sensitivity to H₂O₂, low detection limit (~10 pM), linear response up to µM concentration of H₂O₂</td>
<td>[634, 635]</td>
</tr>
<tr>
<td>Hydroxyl radical (•OH)</td>
<td>(a) EPR spectroscopy by spin-trapping using 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) or 5-tert-butoxycarbonyl-5-methyl-1-pyrroline-N-oxide (BMPO)</td>
<td>tBuOH</td>
<td>(a) Spin trap OH-product is not stable in time, online EPR detection in plasma system not possible. For DMPO, sum concentrations of •OH + O₂⁻ can only be detected</td>
<td>[482]</td>
</tr>
<tr>
<td></td>
<td>(b) HPLC analysis of hydroxylated product (fluorescent) of terephthalic acid TFA (nonfluorescent)</td>
<td></td>
<td>(b) Can be used directly in plasma treated liquid, measurements with several different concentrations of TFA recommended</td>
<td>[489]</td>
</tr>
<tr>
<td></td>
<td>(c) LC/ESI-MS/MS analysis, by multiple reaction monitoring (MRM) mode, of the product of the reaction of •OH with 5,5-dimethyl-1-pyrroline-N-oxide (DMPO), using N-methyl-2-pyrrolidone (NMP) as the internal standard</td>
<td></td>
<td>(c) tBuOH is reported to be the only aliphatic alcohol that does not promote the formation of O₂⁻ and so of •OH</td>
<td>[636]</td>
</tr>
</tbody>
</table>
| | (d) Spectrophotometric or HPLC detection of formaldehyde, product of tBuOH reaction with •OH or ion chromatographic detection of methanesulfinic acid, product of DMSO reaction with •OH | | (d) [636, 637] |}

(Continued)
References

1. Cavendish H 1785 Experiments on air *Phil. Trans.* 75 372–84
18. Ruiz-Vargas G and De Urquijo J 2009 Pressure-dependent electron attachment in H2O-air mixtures *XXIX Int. Conf. Phenomena in Ionized Gases* (Cancun, Mexico) pp PB1–7

Table A2. (Continued)

<table>
<thead>
<tr>
<th>Species</th>
<th>Detection method</th>
<th>Scavengers</th>
<th>Comment</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrate (NO₃⁻)</td>
<td>(a) Spectrophotometric detection of reaction product with 2,6-dimethylphenol to 4-nitro-2,6-dimethylphenol, absorption detection at 340 nm; (b) Ion chromatography</td>
<td></td>
<td></td>
<td>[503, 633]</td>
</tr>
<tr>
<td>Peroxy nitrite (ONOO⁻)</td>
<td>(a) Colorimetric/fluorometric assay with nonfluorescent 2,7-dichlorodihydrofluorescein (DCFH₂) producing with ONOO⁻ fluorescent product dichlorofluorescein (DCF), absorption detection at 500 nm, fluorescence detection at 502 nm (excitation) and 523 nm (emission) (b) Indirect determination through kinetic analysis of third-order reaction between HNO₂ and H₂O₂</td>
<td>Uric acid</td>
<td>(a) DCFH₂ is extremely sensitive to light induced oxidation, problem with reaction specificity of DCFH₂ towards ONOO⁻ since it is sensitive also to other ROS (OCl⁻, H₂O₂, "OH, O₂⁻) (b) Evaluation of ONOOH from concentration decay of NO₂⁻ and H₂O₂ in plasma treated liquid with constant (buffered) pH</td>
<td>[487, 503]</td>
</tr>
<tr>
<td>Singlet Oxygen (O₂)</td>
<td>(a) NIR phosphorescence at 1275 nm (b) Singlet oxygen sensor green</td>
<td>Sodium azide, histidine</td>
<td>(a) Weak emission due to spin restrictions (b) The probe itself can act as a photosensitizer for singlet oxygen production and it degrades in UV producing ROS</td>
<td>[640]</td>
</tr>
</tbody>
</table>

Table A2. (Continued)

[77] Wende K et al 2015 Identification of the biologically active liquid chemistry induced by a non-thermal atmospheric pressure plasma jet Biointerphases 10 029518

[88] Shan Y and Hu Y 2012 Heat and mass transfer within an evaporating solution droplet in a plasma jet J. Therm. Spray Technol. 21 676

[98] Zeleny J 1914 The electrical discharge from liquid points, and a hydrostatic method of measuring the electric intensity at their surfaces Phys. Rev. 3 69–91

[103] Xia Y and Cooks R G 2010 Plasma induced oxidative cleavage of disulphide bonds in polypeptides during nanoelectrospray ionization Anal. Chem. 82 2856–64

[123] Lohse D 2005 Sonoluminescence: cavitation hots up Nature 434 33–4

[124] Young F R 2004 Sonoluminescence (Boca Raton, FL: CRC)

[139] Poschl U and Shiraiwa M 2015 Multiphase chemistry at the atmosphere-biosphere interface influencing climate and public health in the anthropocene Chem. Rev. 115 4440–75

[150] Lewis G 1901 The law of physico-chemical change Proc. Natl Acad. Sci. 37 49

[156] Kolb C E et al 2010 An overview of current issues in the uptake of atmospheric trace gases by aerosols and clouds Atmos. Chem. Phys. 10 10561–605

[165] Davis E J 2006 A history and state-of-the-art of accommodation coefficients Atmos. Res. 82 561–78

[180] Wick C D and Doug L X 2007 Hydroxyl radical transfer between interface and bulk from transition path sampling Chem. Phys. Lett. 444 66–70

spectroscopy and ab initio calculations J. Phys. Chem. A 116 8176–84
[306] Sugimoto T and Higashiyama Y 2001 Production of water drops and corona due to rupture of air bubbles at water surface under a positive dielectric field J. Electrost. 2009 219
[346] Ramos A 2011 Electrokinetik and Electrohydrodynamics in Microsystems (Berlin: Springer)
improved Boltzmann equation solution J. Chem. Phys. 136 024318

[360] Lindsay B G and Mangan M A 2003 Photon and Electron Interactions with Atoms, Molecules and Ions—Interactions of Photons and Electrons with Molecules ed Y Itikawa (Berlin: Springer)

[375] Viehland L A and Mason E A 1995 Transport properties of gaseous ions over a wide energy range At. Data Nucl. Data Tables 60 37–95

[380] Fehsenfeld F C and Ferguson E E 1974 Laboratory studies of negative ion reaction with atmospheric trace constituents J. Chem. Phys. 61 3181–93

[398] Lehmann R 2004 An algorithm for the determination of all significant pathways in chemical reaction systems J. Atmos. Chem. 47 45–78

[400] Smith G P et al 2014 GRI-mech 3.0 www.me.berkeley.edu/gri mech/

[405] Schofield K 1978 Rate constants for the gaseous reactions of O(2D)+ and O(2S)+—a critical evaluation J. Photochem. 9 55–68

[408] Herron J T 1999 Evaluated chemical kinetics data for reactions of N2(2Σg), N2(2Π) and N2(2Σg)+ in the gas phase Phys. Chem. Ref. Data 28 1453–83

[412] Smirnov B M 1974 Ions and Excited Atoms in Plasma (Moscow: Atomizdat)

[414] Itikawa Y 2007 Molecular Processes in Plasmas: Collisions of Charged Particles with Molecules (Berlin: Springer)

[423] US Environmental Protection Agency 2000 Predictive models and tools for assessing chemicals under the toxic substances control act (TSCA) www.epa.gov/oppt/ exposure/pubs/episuite.htm

[483] Desesso J M, Scialli A R and Goeringer G C 1994 D-mannitol, a specific hydroxyl free radical scavenger, reduces the development of oxidative stress in rabbits Teratology 49 248–59

[491] Lukes P, Dolezalova E, Sisrova I and Clupek M 2014 Aqueous-phase chemistry and bactericidal effects from an air discharge plasma in contact with water: evidence for the formation of peroxynitrite through a pseudo-second-order post-discharge reaction of H2O2 and HNO2 Plasma Source Sci. Technol. 23 015019

Plasma Sources Sci. Technol. 25 (2016) 053002

[573] Starikovskiy A 2013 Pulsed nanosecond discharge development in liquids with various dielectric permittivity constants Plasma Source Sci. Technol. 22 012001

[579] Shirafuji T, Nakamura A and Tochikubo F 2014 Numerical simulation of electric double layer in contact with dielectric barrier discharge: effects of ion transport parameters in liquid Japan J. Appl. Phys. 53 03DG4

[583] Rodi W 1997 Comparison of LES and RANS calculations of
the flow around bluff bodies J. Wind Eng. Ind. Aerodyn. 69 55–75

[585] Liepmann D and Gharib M 1992 The role of streamwise
vorticity in the near field entrainment of round jets J. Fluid Mech. 245 643–68

[586] Ottino J M 1989 The Kinematics of Mixing: Stretching,
Chaos and Transport (Cambridge: Cambridge University Press)

transport. Part 7. Finite-rate chemistry and multi-stream
mixing J. Fluid Mech. 240 289–313

Flows (Cambridge: Cambridge University Press)

[589] Givi P 2006 Filtered density function of subgrid scale
modeling of turbulent combustion AI AJ. 44 16–23

[590] Shigeta M 2013 Three-dimensional flow dynamics of an
argon RF plasma with dc jet assistance: a numerical study

2009 Arc plasma torch modeling J. Therm. Spray Technal. 18 728

[592] Zhou Q, Li H, Xu X, Liu F, Guo S, Chang X, Guo W and
Xu P 2009 Comparative Study of turbulence modles on

[597] Sussman M, Smereka P and Osher S 1994 A level set
approach for computing solutions to incompressible

[598] Yecko P and Zaleski S 2005 Transient growth in two-phase
mixing layers J. Fluid Mech. 528 43–52

2014 Numerical analysis of Al vapour effects in gas

[600] Garrick S C 2016 Unpublished data

hydodynamics (SPH): an overview and recent

[602] Bluem H 2006 Pulsed Power Systems: Principles and
Applications (Berlin: Springer)

Treatment ed S Stucki (New York: Plenum) pp 87–118

[604] Marinov D and Braithwaite N S J 2014 Power coupling and
electrical characterization of a radio-frequency micro
atmospheric pressure plasma jet Plasma Source Sci. Technol. 23 062005

[605] Hofmann S, van Gessel A F M, Verreycken T and
Bruggeman P J 2011 Power dissipation, gas temperature and
electron density of a cold atmospheric pressure helium and argon RF plasma jet Plasma Source Sci. Technol. 20 065010–22

[606] Yang X, Moravej M, Nowling G R, Babayan S E, Panelon J,
Chang J P and Hicks R F 2005 Comparison of an
atmospheric pressure, radio-frequency discharge operating in the α and γ modes Plasma Source Sci. Technol. 14 314–20

[607] Ivkovic M, Jovicic S and Konjevic N 2004 Low electron
density diagnostics: development of optical emission
spectroscopic techniques and some applications to
microwave induced plasmas Spectrochim. Acta B 59 591–605

analytical plasmas Spectrochim. Acta B 57 201–41

[610] van Gessel A F M, Carbene E A D, Bruggeman P J and
van der Mullen J A M 2012 Laser scattering on an
atmospheric pressure plasma jet: disentangling Rayleigh,
Raman and Thomson scattering Plasma Source Sci.
Technol. 21 015003

[611] Ito Y, Sakai O and Tachibana K 2010 Measurement of
density function in a microdischarge integrated device
operated in nitrogen at atmospheric pressure using a
millimeter-wave transmission method Plasma Source Sci.
Technol. 19 025006

density and temperature measurement by continuum
radiation emitted from weakly ionized atmospheric pressure plasmas Appl. Phys. Lett. 104 084103

[613] Taghizadeh N, Nikforof A Y, Morent R, van der
Mullen J A M and Leys C 2014 Determination of the
electron temperature of atmospheric pressure argon
plasmas by absolute line intensities and a collisional
radiative model Plasma Proc. Polyn. 11 777–86

[614] Schafer J, Foest R, Reuter S, Kewitz T, Sperka J and
Weltmann K D 2012 Laser schlieren deflectometry for
temperature analysis of filamentary non-thermal
atmospheric pressure plasma Rev. Sci. Instrum. 83 103506

[615] Starikovskaia S M, Allegraud K, Guaitella O and Rousseau A
2010 On electric field measurements in surface dielectric
barrier dischage J. Phys. D: Appl. Phys. 43 124007

[616] Ito T, Kobayashi K, Mueller S, Lugenholshier D,
Czarnetzki U and Hamaguchi S 2009 Electric field
measurements in an atmospheric or higher pressure gas by

[617] Arroyo M P and Hanson R K 1993 Absorption measurements
of water–vapor concentration, temperature, and line-shape
parameters using a tunable InGaAsP diode laser Appl. Opt. 32 6104–16

Hippler R, Weltmann K D and Reuter S 2013 Ambient air
particle transport into the effluent of a cold atmospheric-
pressure argon plasma jet investigated by molecular beam

[620] Dobele H F, Mosbach T, Niemi K and Schulz-von der
Gathen V 2005 Laser induced fluorescence measurements of
absolute atomic densities: concepts and limitations
Plasma Source Sci. Technol. 14 531–41

[621] Tachibana K 2002 VUV to UV laser spectroscopy of atomic
species in processing plasmas Plasma Source Sci.
Technol. 11 A166–72

NO production of an atmospheric pressure RF plasma jet

diagnostics and absolute calibration by Rayleigh scattering
Plasma Source Sci. Technol. 22 015005

Plasma Sources Sci. Technol. 25 (2016) 053002

[640] Schweitzer C and Schmidt R 2003 Physical mechanisms of generation and deactivation of singlet oxygen Chem. Rev. 103 1685