Different modes of a capacitively coupled radio frequency discharge in methane

Irina V. Schweigert

Institute of Theoretical and Applied Mechanics, SB RAS, Novosibirsk

Outline

- Combined PIC MCC algorithm
- Transition between different modes of ccrf discharge in methane
- Phase diagram of ccrf discharge modes
- Hysteresis
- 2D PIC MCC simulation of transition between different modes of ccrf discharge in CH₄
- Conclusion

Why it is necessary to modify Particle in Cell Monte Carlo collision method?

Illustration of electron heating in the rf discharge sheath

(a) Distributions of electrical field E and electron density ne in different moments of rf cycle: t=0.2T (1), 0.3T (2), 0.4T
(3), 0.5T (4), where T – rf cycle time, P=75 mTorr, j=1 mA/cm2, d=6 cm

electrode

Combined model

Kinetic equations for electron and ion distribution functions:

$$\frac{\partial f_e}{\partial t} + \vec{v}_e \frac{\partial f_e}{\partial x} - \frac{e\vec{E}}{m} \frac{\partial f_e}{\partial \vec{v}_e} = J_e, \quad n_e = \int f_e d\vec{v}_e,$$

$$\frac{\partial f_i}{\partial t} + \vec{v}_i \frac{\partial f_i}{\partial x} + \frac{e\vec{E}}{M} \frac{\partial f_i}{\partial \vec{v}_i} = J_i, \quad n_i = \int f_i d\vec{v}_i,$$

Continuity equations for ion and electron densities and currents (see next slide)

Poisson equation:
$$\Delta \phi = 4\pi e(n_e^{'} - n_i^{'}), \quad E = -\frac{\partial \phi}{\partial x}$$

Schweigert, Schweigert, New combined PIC-MCC approach for fast simulation of a radio frequency discharge at low gas pressure. Plasma Source Sci Technol., **13**(2), 315 (2004) Continuity equations for ion and electron densities and currents

In usual fluid approach terms Q_e and Q_i are supposed to be zero, which is correct only for the constant scattering frequencies

Comparison of electron energy calculated with three different PIC-MCC methods:

- 1) standard PIC-MCC,
- 2) PIC-MCC with space smoothing
- 3) combined PIC-MCC

In Figure: P = 0.1 Torr (a) and 0.3 Torr (b), inter-electrode distance 6.7 cm, 13,56 MHz discharge in argon, $j=2.65mA/cm^2$

Standard PIC-MCC (■) PIC-MCC with space smoothing (○) combined PIC-MCC (▲) ↓ Birdsall, 1991. ---- Godyak, 1986

Electron energy as function of $N^{-1/2}$, where N is the number of psevdo particle

Electron energy distribution function

o - experiment, Godyak, 1986,
 d=6.7 см, j=1мА/см²

▲ - calculation

Exp: Godyak et al, PSST (1992) Sim: Schweigert, Schweigert, PSST,2004 Electron temperature in discharge center ver gas pressure in He and Ar

Transition between different regimes in methane. Simulations with combined PIC MCC.

	Reaction	Energy threshold (eV)		
	Vibrational excitat	tion		
1	$CH_4 + e = CH_4^* + e$	0.162		
2	$CH_4 + e = CH_4^* + e$	0.361		
Dissociation				
3	$CH_4 + e = CH_3 + H + e$	8.0		
4	$CH_4 + e = CH_2 + 2H + e$	8.0		
Ionization				
5	$CH_4 + e = CH_4^+ + 2e$	12.6		
6	$\mathrm{CH}_4 + \mathrm{e} = \mathrm{CH}_3^+ + \mathrm{H} + 2\mathrm{e}$	14.3		

Table 1. Electron–methane reactions involved in Monte-Carlo collision simulation.

Two modes of discharge operation

I. Schweigert, JETP 126, 4(10), (2004)

I. Schweigert, Phys. Rev. Lett. 92(15), 155001 (2004)

Averaged electron density (a) and electron energy (b) for P=10 mTorr (1) u 123 mTorr (2), j=0.45 mA/cm².

Volume mode is at P=10 mTorr (1), active sheath mode at P=123 mTorr (2), Sugai experiment, 1990 (3) P=123 mTorr.

Transition between two modes

Small variation of discharge current (from 1mA/cm² to j=1mA/cm²) induces transition between two modes

Electron energy probability function

In figure: EEPF in AS mode $j=1.1 \text{ mA/cm}^2$ (AS) at x=0.86 cm (1) at x=3 cm (2),

In figure insert: EEPF in VD mode j=1 mA/cm² (VD) at x=1.3 cm (3) and at x=3 cm (4) (insert)

P=0.075 Torr, d=6 cm

1, 3 in the sheath, 2, 4 in the center of discharge

Formation of radicals CH₂, CH₃

Electron heating in electrical field E (a), (b) energy input in excitation of vibration states of CH_4 molecules (red), dissociation (green) and ionization (blue) (c), (d).

Current density: *j* = 1 mA/cm² (a),(c), 1.1 mA/cm² (b),(d). P= 75 mTorr.

Phase diagram of different regimes in ccrf discharge in methane

Lines separate VD and AS modes for different interelectrode gaps: $d = 6 \ cm - (\blacksquare)$ $d = 4 \ CM - (\land)$ $d = 3 \, cm - (\circ)$ Symbols are comparison with other authors: V. Ivanov, 2002 (V) Nagayama, 1998 (•), Bera, 1999 (•)

Is α - γ mechanism responsible for transition between different modes?

Electron energy in the center of discharge as function of discharge current for $\gamma=0$ and 0.2 (a) and for different gas pressures for $\gamma=0$ (b).₁₅

Hysteresis in ccrf discharge in methane

Electron energy (a) and electron density (b) in center of discharge as function of discharge current for 75 μ Topp. Hysteresis was observed in experiment of C. Bohm, J. Perrin, 1991 & SiH₄ ccrf discharge.

Two dimensional fast PIC MCC simulations

Acceleration algorithm by V. Schweigert, Plasma Source Sci. Technol. 8, B1,(1999)

I.V. Schweigert, A. Alexandrov, *Transition Between Different Modes of a Capacitively Coupled Radio Frequency Discharge in CH4 in One and two dimensional PIC-MCC simulations. IEEE Transaction on Plasma Science*, 33, 615-622 (2005)

A. Alexandrov, I.V. Schweigert, *Two-dimensional PIC-MCC simulations of a capacitively coupled radio frequency discharge in methane.* PSST, 14, 209-218 (2005)

Simulation of ccrf discharge in methane in reactor (2D axially symmetrical model)

Kinetic equations for electron and ion distribution functions:

$$\frac{\partial f_e}{\partial t} + \vec{v}_e \frac{\partial f_e}{\partial \vec{r}} - \frac{e\vec{E}}{m} \frac{\partial f_e}{\partial \vec{v}_e} = J_e, \quad n_e = \int f_e d\vec{v}_e,$$

$$\frac{\partial f_i}{\partial t} + \vec{v}_i \frac{\partial f_i}{\partial \vec{r}} + \frac{e\vec{E}}{M} \frac{\partial f_i}{\partial \vec{v}_i} = J_i, \quad n_i = \int f_i d\vec{v}_i,$$

Poisson equation:

$$\Delta \phi = 4\pi e(n_e^{'} - n_i^{'}), \quad E = -\frac{\partial \phi}{\partial \vec{r}}.$$

Reactor geometry and calculation cell

Table 2. Chemical reactions taken into account in the g chemistry model.

N	Reaction	Rate constant k_N (m ³ s ⁻¹)
	Electron-methane	
1	$CH_4 + e = CH_3 + H + e$	Obtained by MCC
2	$CH_4 + e = CH_2 + 2H + e$	Obtained by MCC
3	$CH_4 + e = CH_4^+ + 2e$	Obtained by MCC
4	$CH_4 + e = CH_3^+ + H + 2e$	Obtained by MCC
	Ion-methane	
5	$CH_4 + CH_4^+ = CH_5^+ + CH_3$	1.5×10^{-15}
6	$CH_4 + CH_3^+ = C_2H_5^+ + H_2$	1.2×10^{-15}
	Radical reactions	
7	$CH_3 + CH_3 = C_2H_6$	8×10^{-17}
8	$CH_3 + H = CH_4$	1.38×10^{-16}
9	$CH_2 + H = CH + H_2$	2.7×10^{-16}
10	$CH_2 + CH_4 = CH_3 + CH_3$	1.5×10^{-18}
11	$CH_2 + CH_2 = C_2H_2 + H_2$	5.3×10^{-17}
12	$CH_2 + CH_2 = C_2H_2 + H_2$ $CH_2 + CH_2 = C_2H_4 + H_2$	10^{-16}
13	$CH_2 + CH_4 = C_2H_4 + H$	10-16
14	$CH + CH_4 = C_2H_5$	10-16
15	$C_2H_5 + H = CH_3 + CH_3$	6×10^{-17}
16	$C_2H_5 + H = C_2H_4 + H_2$	3×10^{-18}
17	$C_2H_5 + CH_3 = C_3H_8$	4.2×10^{-18}

P=123 *mTorr, U*=120 *V*

(a, d) electron density, (b,e) electron energy, (c,f) $CH4 \rightarrow CH3+H$,. In Figs (d-f) at r=0 (solid), r=6 cm (dashed)

2D distributions of plasma parameters in volume dominated mode

Transition between different modes

Averaged over rf cycles at r=0: (a) potential, (b) electron density (c) electron energy, (d) dissociation rate $CH_4 \rightarrow CH_3$ +H at P=123 mTorr, U=180-40 V, symbols - exp Sugai, 1990 22

Radical distribution

Distribution of density of radical CH_3 u CH_2 for different gas pressures. Symbols experiment of Sugai, 1990

Comparison of 1D and 2D results

Conclusion

- Combined PIC MCC was developed for efficient simulation of low gas pressure discharge (in particular for gases with a deep Ramsauer minimum in the elastic scattering cross sections)
- We studied two regimes of the ccrf discharge glow in methane and constructed the P-j phase diagram to show the location of volume dominated and active sheath regimes. The critical values for transition have first been calculated for a wide range of j and P.
- It is shown that the transition between two modes of the CH_4 discharge is not related with α - γ transition as in the argon discharge.
- We have found the hysteresis in discharge behavior.