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Why it is necessary to modify Particle in Cell Monte

Illustration of electron heating in the rf discharge sheath

Why it is necessary  to modify Particle in Cell Monte 
Carlo collision method?

(a) Distributions of 

Illustration of electron heating in the rf discharge sheath

electrical field E and 
electron density ne 
in different moments of
rf cycle: 
t=0.2T (1), 0.3T (2), 0.4T 
(3), 0.5T (4), where T – rf 
cycle time P=75 mTorrcycle time, P=75 mTorr, 
j=1 mA/cm2, d=6 cm

electrode
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Combined modelCombined model

Kinetic equations for electron and ion distribution functions:
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Continuity equations for ion and electron densities and currents
(see next slide)
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Schweigert,  Schweigert, New combined PIC-MCC approach for fast 
simulation of a radio frequency discharge at low gas pressure.
Plasma Source  Sci Technol., 13(2),  315 (2004)
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Continuity equations for ion and electron densities and currents
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In usual fluid approach terms Qe and Qi are supposed to be zero,
which is correct only for the constant scattering frequencies 5



Comparison of electron energy calculated with three 
diff t PIC MCC th d

1) standard PIC-MCC, 
2) PIC MCC ith thi)

2.5
(a)

different PIC-MCC methods:

2) PIC-MCC with space smoothing
3) combined PIC-MCC

U
e (

eV
)

1 0

1.5

2.0

4000

N 128000 In Figure: 
P = 0.1 Torr (a) and 0.3 Torr (b),
inter-electrode distance 6.7 см, 
13 56 MHz discharge in argon4 0

0.5

1.0 N=128000

13,56 MHz discharge in argon,
j=2.65mA/cm2

Standard PIC-MCC  (■)   3.0

3.5

4.0

16000

64000

U
e (

eV
)

PIC-MCC with space smoothing (○)  
combined PIC-MCC (▲) 
┼ Birdsall, 1991. 
- - - - - Godyak 1986

0.01 0.02
2.0

2.5
(b)

N-1/2 Godyak, 1986 N
Electron energy as function of N -1/2,

where N is the number of psevdo particle 6



○ - experiment, Godyak, 1986, 
Electron energy distribution function

p , y , ,
d=6.7 см, j=1мА/см2

▲ - calculation
Simulation 

helium

10-3

10-2

10-1

100

PF
 (e

V-3
/2
)

0.3 Torr

P=1 Torr

argon

10 20 30 4010-5

10-4

10
0.1 Torr

0.03 Torr

EE
P

Ue (eV)
100

10-4

10-3

10-2

10-1

0.1 TorrE
EP

F 
(e

V
-3

/2
)

0.3 Torr

P=1 Torr

5 10 15 2010-5 0.03 Torr

Ue (eV)

Electron temperature in discharge 
center ver gas pressure in He and Ar

Exp: Godyak et al, PSST (1992)
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Transition between different regimes in 
methane Simulations with combinedmethane. Simulations with combined 

PIC MCC.
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Two modes of discharge operationo odes o d sc a ge ope a o
I. Schweigert,  JETP 126,  4(10),  (2004)
I. Schweigert, Phys. Rev. Lett. 92(15),  155001 (2004)
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J=0.45 (mA/cm2)
 P=0.01 Torr,  
 P=0.123 Torr, exp
 P=0.123 Torr
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Volume mode is at Р=10 mTorr (1), active sheath mode at P=123 mTorr
(2), Sugai experiment, 1990 (3) P=123 mTorr.
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Transition between two modes
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Small variation of discharge current (from 1mA/cm2 to j=1mA/cm2 )
induces transition between two modes 11



Electron energy probability functionElectron energy probability function

In figure: EEPF in AS mode
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In figure insert: EEPF in VD mode
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Formation of radicals СH2, CH32, 3

Electron heating in
j=1mA/cm2

heating
(a) 10(c) Electron heating in
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energy input in excitation
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Phase diagram of different regimes in ccrfPhase diagram of different regimes in ccrf 
discharge in methane
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Is α-γ mechanism responsible for γ p
transition between different modes?
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Hysteresis in ccrf discharge in methaneHysteresis in ccrf discharge in methane
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Two dimensional fast PIC MCC 
simulationssimulations

Acceleration algorithm by V. Schweigert,  Plasma Source 
Sci. Technol. 8, B1,(1999)

I.V. Schweigert, A. Alexandrov, Transition Between Different Modes of a 
Capacitively Coupled Radio Frequency Discharge in CH4 in One and two 

dimensional PIC-MCC simulations. IEEE Transaction on Plasma Science, 33, 
615-622 (2005)

A Alexandrov I V Schweigert Two-dimensional PIC-MCC simulations of aA. Alexandrov, I.V. Schweigert, Two-dimensional PIC-MCC simulations of a 
capacitively coupled radio frequency discharge in methane. PSST, 14, 209-218 

(2005)
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Simulation of ccrf discharge in methane in reactorg
(2D axially symmetrical model)
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Kinetic equations for electron and ion 
distribution functions:
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Active sheath mode

P=123 mTorr, U=120 V
(a, d) electron density, (b,e) electron energy, (c,f) CH4→CH3+H,.
In Figs (d-f) at r=0 (solid ), r=6 cm (dashed)
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2D distributions of plasma parameters in2D distributions of plasma parameters in2D distributions of plasma parameters in 2D distributions of plasma parameters in 
volume dominated modevolume dominated mode

P=50 mTorr, U=60 V

(a, d) electron
density, (b,e)
electron energy,
( f)(c,f)
CH4→CH3+H. In
Figs (d-f) at r=0
(solid ), r=6 cm( ),
(dashed)
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Transition between different modes 
in plasma reactor

(a) (b)

(с) (d)

Averaged over rf cycles at r=0: (a) potentialpotential, (b) electron densityAveraged over rf cycles at r 0: (a) potentialpotential, (b) electron density
(c) electron energy, (d) dissociation rate CH4 →CH3+H 
at P=123 mTorr, U=180-40 V, symbols - exp Sugai, 1990 22



Radical distribution

Distribution of density of radical CH и CH for differentDistribution of density of radical CH3 и CH2 for different
gas pressures. Symbols experiment of Sugai, 1990
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Comparison of 1D and 2D results
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C l iConclusion
Combined PIC MCC was developed for efficientCombined PIC MCC was developed for efficient 
simulation of low gas pressure discharge (in particular
for gases with a deep Ramsauer minimum in the elastic
scattering cross sections)g )
We studied two regimes of the ccrf discharge glow in
methane and constructed the P-j phase diagram to show
the location of volume dominated and active sheaththe location of volume dominated  and active sheath 
regimes.The critical values for transition have first been
calculated for a wide range of j and P.
It is shown that the transition between two modes of theIt is shown that the transition between two modes of the
CH4 discharge is not related with α-γ transition as in the
argon discharge.
We have found the hysteresis in discharge behaviorWe have found the hysteresis in discharge behavior.
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