Diagnostic tools for multi-dimensional plasmas

DOE-OFS Plasma Science Center

Edward V. Barnat
Greg Hebner, Kraig Frederickson, Paul Miller
Sandia National Laboratories
Albuquerque, N.M.
Outline of the talk

- Introduction to Sandia
 - What we’ve done, what we are doing, where we are going
- Plasma density and temperature diagnostics
 - Laser-collision induced fluorescence (LCIF)
- Electric field diagnostics
 - Laser-induced fluorescence-dip (LIF-Dip)
- Surface diagnostics
 - Picosecond sum frequency generation ps-SFG
- Future directions and concluding thoughts
 - Where can connections be made?
Low temperature plasma studies at Sandia

- Sandia has rich history in LTP
 - Broad range of customers

- Long-term investment by DOE
 - Responsive to broad range of needs

- Past
 - Sematech, Applied Materials
 - DOE-BES
 - Various internal customers

- Present
 - WFO (NASA and others)
 - Internal customers
 - DOE-OFS PLSC

- Future
 - Maintain open door and stay responsive
Time-resolved, two dimensional electron density and temperature measurements

- Laser-collision induced fluorescence (LCIF)
 - Pump population to an intermediate state
 - Plasma electrons redistribute portion of population
 - Monitor fluorescence from neighboring states

Degree of redistribution depends on n_e, T_e
A "good" model is required to predict transfer between levels

- Employ a collisional-radiative model (CRM):

\[
\frac{dN_j}{dt} = \left[\sum_{i \neq j} K_{ij}^e N_i - \sum_{i \neq j} K_{ji}^e N_j \right] n_e + \left[\sum_{i > j} A_{ij} N_i - \sum_{i < j} A_{ji} N_j \right] + \sum_k \left[\sum_{i \neq j} K_{ikj}^a N_i - \sum_{i \neq j} K_{jki}^a N_j \right] N_k
\]

- Temperature dependence is introduced via collisional rates \(K_{ij}^e \)

\[
K_{ij}^e = \langle \sigma_{ij} v_e \rangle = \left(\frac{m_e}{2\pi k T_e} \right)^{\frac{3}{2}} \int_0^\infty \sigma_{ij}(v) \exp\left(-\frac{m_e v^2}{2k_B T_e} \right) 4\pi v^2 dv
\]

Key transitions in Helium

Computed and measured excitation rates in Helium

Success is dependant on knowledge of rates

Density and temperature dependent trends derived from CMR results

- Computed temporal evolution of LCIF
 - Focus on key transitions

Normalized time dependent LCIF trends

![Normalized time dependent LCIF trends diagram]

Time integrated, ratio trends

![Time integrated, ratio trends diagram]

Key transitions

These transitions have yielded best signals
Demonstration of LCIF technique: Time modulated plasma

- **Proof of principle:** Examine time evolution of transient plasma
 - Afterglow of RF modulated plasma,
 - Pulse bias generated to planar electrode

Setup

- RF coil
- Image area
- Double floating probes

Data

<table>
<thead>
<tr>
<th>Time (μs)</th>
<th>n_e (LCIF)</th>
<th>kT_e (LCIF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>10^1</td>
<td>5 eV</td>
</tr>
<tr>
<td>10</td>
<td>10^1</td>
<td>5 eV</td>
</tr>
<tr>
<td>20</td>
<td>10^1</td>
<td>5 eV</td>
</tr>
<tr>
<td>30</td>
<td>10^1</td>
<td>5 eV</td>
</tr>
<tr>
<td>40</td>
<td>10^1</td>
<td>5 eV</td>
</tr>
</tbody>
</table>

Analysis

- Captures decay of the plasma
 - Fast kT_e, slower n_e, very slow metastable
- Reasonable agreement between LCIF and probe
 - Probe problematic, uncertainties in rates

Proof of principle demonstrated
Demonstration of LCIF technique: Static structure of a sheath

- Examine spatial structure around biased electrode
 - Representative LCIF data used for analysis

Key transitions

Temperature measurements become tricky in the sheath....

![Graphs showing electron density and temperature](image-url)
Demonstration of LCIF technique: Formation of ion sheath

- Proof of principle: Two-dimensional maps of electron density
 - 50 μs after positive pulse applied to electrode
 - 20 ns snapshots of LCIF, 30 ns steps

Decent temporal and spatial resolution demonstrated
Current plasmas of interest

- We are looking at various plasma systems
 - Plasma double layers and anode glows
 - Expanding and flowing plasmas
 - ECR and magnetized plasmas (B. Weatherford & J. Foster, U. Mich)

What other systems can this technique be applied to?
Time-resolved, two dimensional electric fields

- Laser-induced fluorescence-dip spectroscopy (LIF-dip)
 - Pump population into intermediate state
 - Redistribute portion of this population to Rydberg state with probe laser
 - Monitor fluorescence from intermediate state

Rydberg levels offer varying sensitivity to electric fields.
Typical 2D LCIF-dip experimental arrangement

- Firing of lasers synched to rf phase.
 - 13 MHz rf, 20 Hz lasers
 - Time resolved rf voltages
- Gate ICCD after firing of the lasers
 - 2D snapshot of LIF
 - Accumulate for ~ 100's of laser shots
- Repeat as probe laser is incrementally stepped
 - Typically 30 discrete steps
- Post process to determine electric fields
 - Plot LIF vs. wavelength for each pixel
 - Assign electric field, create 2D map
Scenario: Metal-dielectric interface

- Test case:
 - We know that the electric fields will be non-uniform

How will electric field distribution influence energy deposited into the plasma?
Structured boundaries introduce non-uniformities

- 2D measurements demonstrate technique
 - Electric fields impacted by boundaries
- Analysis above both surfaces
 - Sheath potentials are not equal
 - Potential drop across dielectric
- Compare measured electric fields to models
 - Validate predictions

Comparison to model

Analysis of electric fields

Measured distribution of electric fields

<table>
<thead>
<tr>
<th>Surface</th>
<th>kT_e(eV)</th>
<th>λ_e(mm)</th>
<th>ϕ_m(mm)</th>
<th>n_i(ion/cm3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conductor</td>
<td>2</td>
<td>0.12</td>
<td>3.3</td>
<td>1.6×10^{16}</td>
</tr>
<tr>
<td>Insulator</td>
<td>2</td>
<td>0.12</td>
<td>3.1</td>
<td>1.9×10^{15}</td>
</tr>
</tbody>
</table>

400 mTorr Argon; 320 V$_{pp}$ @ 13.56 MHz; 1.5 mm Teflon (κ ~ 2.1)

\[V = -\int E \cdot dl \]

Time resolved studies provide more insight

- Single "snapshot" is indicative - at risk of missing whole picture
 - Time resolved measurements yield more complete picture

- Phase-resolved measurements
 - Phase-locked LIF-Dip
 - Phase resolved optical emission (PROES)

Capture transient phenomena with time resolved measurements
Incorporate additional diagnostics to help complete the picture

- Lower fields mean less energy deposited into the plasma above the dielectric
 - Less excitation, less ionization

- Gradients in potential across the sheath are maintained by a horizontal component of the electric field
 - Influence angular distribution of ions hitting surface

Electrode topology impacts plasma and surface interactions
Scenario: Different conductors

- Less obvious - both are conductors
 - No induced voltage across either one

Is there any noticeable difference introduced by the dissimilar metals?
Different metals do influence discharge structure….

Under certain circumstances

- At a pressure of 100 mTorr, very little difference is observed

- At a pressure of 400 mTorr, there is a difference

The choice of metal and choice of operating conditions influences the plasma

320 V_{pp} @ 13.56 MHz
Secondary electrons become more important in plasma heating at higher pressures

- Species hitting the surface can liberate electrons (Secondary emission γ)
- Electrons accelerated by sheath into the plasma
- Cascading collisions arise if mean-free path (λ) is short compared to sheath thickness

\[
\frac{n_{\gamma}}{n_0} \approx \gamma e^{\frac{\Delta x}{\lambda}}
\]

Fraction of γ electrons

Estimated γ contribution

Measured charge densities

Plasma is coupled to emission from the surface, surface is coupled to the plasma......
Scenario: Electric fields around a charged "dust grain"

- Initially funded through BES - Dusty plasmas
 - "Invested" in electric field diagnostics
- Thrust II area of interest

"Far" - Langmuir probe

"Near" - Dusty plasma

Structure is symmetric in bulk plasma, independent of neutral density

Field profiles around the probe are symmetric, and extend ~ 1 mm from probe

Sheath structure changes with bias
 • Higher fields, slightly thicker sheath

Sheath structure is independent of pressure
 • Not dependent on collisions??
Interaction between the probe and plasma extends beyond the sheath

- Unexpected changes in excitation observed around the probe:
 \[\text{Difference} \equiv \frac{LIF_{\text{Bias}} - LIF_{\text{Float}}}{LIF_{\text{Float}}} \]

- Differences extend beyond measured sheath
 - Sheath thickness \(\sim 1 \text{ mm} \)
 - Change extends > 5 mm

- Differences are not symmetric
 - Dependent on location w.r.t. powered electrode?

- What is the source of the loss?

The presence of this “small particle” impacts “large region”

Relative changes in 1s\(_4\) LIF
Ion dynamics depend on properties of the grain

- **Above the sheath**
 - $V_{\text{Probe}} < V_{\text{Local}}$
 - Some "bending"
 - Depletion of space charge by the probe

- **At the sheath edge**
 - Big q/m grain
 - $V_{\text{Probe}} \sim V_{\text{Local}}$
 - Hard to detect focusing

- **In the sheath**
 - Small q/m grain
 - $V_{\text{Probe}} > V_{\text{Local}}$
 - Ions repelled from probe

Floating Probe: $V_{\text{Probe}} \sim 5$ V

200 mTorr, 25 Watts
SNL is implementing cw laser diagnostics for ion velocity measurements

- Developing and implementing cw-laser based diagnostic for measuring ion velocities
 - K. Frederickson
- Our “deliverable” for FY10

This is going to be a challenge…
Future directions: Ultrafast laser diagnostics to probe plasma-surface interface

- “Holy Grail” of LTP
 - Synergistic effects
 - Peer into mechanisms
- Diagnostics are “challenging”
 - LTP community actively engaged
- (Ultra) fast spectroscopy offers access to surface/interface
 - Intense photon flux to drive non-linear processes
 - Faster than molecular and electronic relaxation timescales

Sum-frequency generation

\[
|0> \quad \omega_{IR} \quad \omega_{Vis} \quad |v> \quad \omega_{SFG} \\
|1> \quad \omega_{IR} \quad \omega_{Vis} \quad |v> \quad \omega_{SFG}
\]

Time-resolved pump-probe

\[
\Delta t \quad \omega_{pump} \quad \omega_{Probe}
\]
Future directions: Sum frequency generation

“Sum-frequency generation (SFH)
- Second order, non-linear Raman technique
- $I_{SFG} \sim |\chi^{(2)} E_{Vis} E_{IR}|^2$

Powerful diagnostic for surface studies
- Sensitive to chemical composition
- Molecular orientation
- Broad range of pressures

Has been implemented in our lab
- Darcy Farrow

Conversation is underway with Task III PI's to identify paths towards implementation
Future directions: Time-resolved pump-probe spectroscopy

- Time-resolved pump-probe spectroscopy
 - Femtosecond laser pulses, temporally delayed

- Probe electronic structure of various materials
 - Relaxation times depend on electronic structure of material

- Potential PLSC applications
 - Poisoned catalysts
 - Metal hydrides, nitrides, oxide.
 - Film thickness

Concept

\[\Delta t \quad \omega_{\text{pump}} \quad \omega_{\text{Probe}} \]

Setup

Bench-top setup looking for the right mission...

Results

- Samples provided by S. G. Walton, NRL

- Untreated
- Plasma treated

Guiding data

Concluding remarks

- Emphasis placed on more recent experiments performed mostly by EVB
 - More powerful, "unique capabilities" at our disposal
 - "Tip of the iceberg"

- It is our goal to capitalize on the unique opportunities offered to us through funding of PLSC
 - Great chance to open the doors and invite community in…..

There are many opportunities to host members of the PLSC (Professors, post-docs and students …)

Is there interest from members of the PLSC at large to pursue these opportunities?

Thank you!
Greg Hebner
Manager
Sandia National Laboratories
Dept 1128 - Lasers, Plasmas, and Remote Sensing
1515 Eubank Blvd. SE
Albuquerque, NM 87185-1423
Phone: (505) 844-6831
Fax: (505) 844-5459
Email: gahebne@sandia.gov

Ed Barnat
Technical Staff
Sandia National Laboratories
Dept 1128 - Lasers, Plasmas, and Remote Sensing
1515 Eubank Blvd. SE
Albuquerque, NM 87185-1423
Phone: (505) 284-9828
Fax: (505) 844-5459
Email: evbarna@sandia.gov
Appendix: Microwave diagnostics

- Large array of microwave hardware and expertise accessible for plasma characterization
 - (P. Miller and G. Hebner)
Appendix: Probes

- Specialization in probes and probe arrays for characterizing plasma
 - P. Miller, G. Hebner, E. Barnat

Ion Flow

"B-dot"

Hairpin resonator
Appendix: Multi-frequency rf plasmas

WFO with Applied Materials - High frequency and multi frequency scaling studies

300 mm chamber

Frequency scaling

Dual frequency

Electromagnetic effects

Radial current density

Radial sheath voltage

WFO with Applied Materials - High frequency and multi frequency scaling studies

300 mm chamber

Frequency scaling

Dual frequency

Electromagnetic effects

Radial current density

Radial sheath voltage
Appendix: Magnetized rf plasmas

- WFO with Applied Materials - Model validation and predictive development

Modified GEC ref cell	I & V trends	Electric fields

I & V trends

- [Graphs showing I & V trends with magnetic field variations]

Electric fields

- [Graphs showing electric field distributions with and without magnetic field]

Modified GEC ref cell

- Diagram of the modified GEC reference cell with dimensions and magnetic field orientations.

Magnetized Hydrogen plasma

- Diagram showing excitation profiles at different heights and magnetic field strengths.

[Images of experimental setups and data visualizations related to magnetized plasmas]