Electron Temperature Modification in Gas Discharge Plasma

Valery Godyak

University of Michigan and RF Plasma Consulting egodyak@comcast.net

Low Temperature Plasma Teleseminar, January 27, 2012

Also presented at Workshop: Control of Distribution Functions in Low Temperature Plasmas at 64th Annual Gaseous Electronics Conference November 14–18, 2011; Salt Lake City, Utah

This work was supported in part by the DOE OFES (Contract No DE-SC0001939)

Electron Temperature in Gas Discharge

(Uniform electric field, $E \cdot grad(n) = 0$, Maxwellian EEDF and direct ionization) plasma parameters are in equilibrium with electric field, spatial and temporal locality

- Ionization balance (continuity and momentum eqs.) in a steady-state, self-sustained bounded plasma defines z, resulting in: $T_e = T_e (p\Lambda)$, independently on P_d and n.
- Electron energy balance, $P_d = \int (3/2)VT_e n\xi dV$, results in: $Re(E_{pl}) = const(p\Lambda)$, $n \sim P_d$

Here ξ is the characteristic frequency of electron energy loss, $\xi = v_e / \lambda_\epsilon$ $\xi = v_{en} 2m/M + \Sigma 2v^* \epsilon^* / 3T_e + z \{ 2\epsilon^i / 3T_e + (4/3) + \frac{1}{3} [1 + \ln(M/2\pi m)] \}$

The fundamental relations for the electric field E and the total number of electrons/ions N_p follows from the electron energy balance:

$$E^2 = 3T_e m\xi v_{eff}(1 + \omega^2 / v_{eff}^2)$$
 and $N_p = \langle n \rangle V = 2P_d / 3\xi T_e$

Thus, for given P_d and $p\Lambda$, T_e and n should be the same for all kinds of discharges These are basically true for non-Maxwellian EEDF and with non-linear processes

Non-local electron kinetics

In gas discharge plasmas, electrons are not in equilibrium with molecules and ions, $T_e >> T_i, T_g$, they are not in equilibrium within their own ensemble, non-Maxwellian, and when $\lambda_{\epsilon} = v_e/\xi > L$, they are not in equilibrium with a non-uniform heating electric field E.

The last is domain of electron non-local kinetics where plasma parameters are not local function of the field, $grad(T_e) \approx 0$ and $df_e(\epsilon + eV)/dr \approx 0$

EEDF in a non uniform E-field

At $\omega \ll \omega_{p_i}$ the external electromagnetic field is localized at the plasma boundary, S, $\delta \ll L$, and in plasma bulk $E \propto n^{-1}$ when $E \cdot grad(n) \neq 0$

Electric field non-uniformity typically occurs when $\omega \ll \omega_p$ and electromagnetic field is localized at the plasma boundary, S, $\delta \ll L$, and in plasma when E•grad(n) $\neq 0$

Hot electrons generated in the zone of strong electric field produce ionization in the area of week field. In the presence of some separation mechanism preventing new-born electrons mixing with hot electrons or/and to penetrate the heating zone, the new-born electrons remain cold. This results in EEDF having two electron groups (hot and cold). This cold plasma has features of a non-self-sustained discharge

Thus, the local electron heating together with some separation mechanism result in plasma cooling

Electron cooling in negative glow of dc glow discharge

Solntsev et al, 8th ICPIG, p. 86, Vienna, 1967, have measured ultra-cold electrons ($T_e = 0.04 - 0.3 \text{ eV}$, 1-2 orders of magnitude lower than that in the positive column. He, 0.6 - 4 Torr, $I_d = 0.6 - 8 \text{ mA}$.

Haas et al, PSST. **7**, *471, 1998*, have demonstrated plasma electron cooling by injecting 100 eV electron beam into CCP.

Heating mode transition in CCP Ar CCP at13.65 MHz, L = 2 cm0385 Pressure Torn $n_o = 1.45 \cdot 10^{10} cm^{-3}$ < $\epsilon > = 0.89 eV$ 00 eedf/n_o (eV⁻¹) 8 ×100 4 ×10 10¹⁰ 0 $T_1 = 0.34 \text{ V}, \text{ n}_1 = 1.32 \cdot 10^{10} \text{ cm}^{-3}$ $T_2 = 3.1 \text{ V}, \text{ n}_2 = 1.3 \cdot 10^9 \text{ cm}^{-3}$ 10¹⁰ eepf (eV ^{-3/2} cm ⁻³) eepf (eV^{-3/2}cm⁻³) 10⁸ 10⁸ T_2 10⁶ 10⁶ 5 10 15 0 0 5 10 15 electron energy (eV) electron energy (eV)

Godyak and Piejak, Phys. Rev. Lett. 65, 996, 1990

Transition to high plasma density (γ -mode) CCP, 13.56 MHz, He 0.3 Torr T_e pressure dependence discharge current density indicate? ò HELIUM 0 Ó 3 L=6.7 cm J=10 mA/cm² a 2 10^{0} Ó Ο 1 0 10⁹ L^{e min} (e<) 10¹⁰ 0 10³ eept (eV ^{-3/2} cm⁻³) 10^{3} power density (mW/cm²) 0. 1 1 1 0 10⁸ 10^{2} - room temperature 1 0² 0 10^{-2} 10^{0} 10⁶ 10^{-1} 10¹ 0⁰ ا gas pressure (Torr) 10¹ 10 20 30 0 10¹ 10⁻¹ 10° electron energy (eV) current density (mA/cm²)

Godyak et al, Phys. Rev. Lett. 68, 49, 1992

7

EEDF and plasma parameter in ICP

Godyak et al, PSST, 11, 525, 2002

Temporal non-locality: Time resolved EEDF measurement

$$\omega >> z \rightarrow dn/dt = 0$$
, but $\omega \approx \xi \rightarrow dT_e/dt \neq 0$

Toroidal ICP driven with ferrite inductor at 50-250 kHz, Hg-Ar, 0.3 Torr

Frequency dependence of EEDF in ICP with anomalous skin effect

Selective electron heating. Collisionless heating occurs at $v_e/\delta > \omega$

Godyak and Kolobov, Phys. Rev. Lett., 81, 369, 1998

Temporal nonlocality: Electron temperature variation in pulse discharge and Low frequency RF Discharge

Godyak and Alexandrovich, XXVII ICPIG, vol. 1, p.221, Eindhoven, The Nederland, 2005

12

 T_e control with negatively biased greed (Kato et al, 1994) Plasma source and diffusion zones are separated with negatively biased mesh

Ikada et all, Thin Solid Films 457, 55, 2004

Localized ECR array reactor with trapped ECR plasma

Ar/SiF₄ at 10 mTorr with microcrystalline silicon deposition. Multicusp magnetic confinement of fast electrons. An order of magnitude T_e reduction in diffusion zone.

Local ESR electron heating with separation between hot and cold electrons provided by magnetic filters

Te

0.33

Measurement position

Global magnetic filter with trapped ICP drive at 5 MHz

Magnetic field breaks non-locality in electron kinetics, leading to plasma stratification on hot (T_{eh}) and cold (T_{ec}) electron zones, $T_{eh} > T_{e0} > T_{ec}$

Godyak, 63 GEC, Paris, France, 2010

EEPF and plasma parameters along magnetic filter Ecole Polytechnique

Conclusions

• In gas discharge plasma at $\lambda_{\epsilon} >> \Lambda$ and large dE/dr, EEDF is not in local equilibrium with E-field, plasma parameters and the field distributions are decoupled and df($\epsilon + e\phi$)/dr ≈ 0

• Generation of excess of high energy electrons cools down the main body of electron population leading to formation two electron groups

• Formation of highly non-equilibrium EEDF with two-temperature structure ($T_{e1} \ll T_{e2}$) requires both, strong E-field localization (to produce fast electrons) and some separation mechanism preventing low energy electron heating and mixing with hot electrons.

• Non-equilibrium discharges with strong localization (in space and/or in time) of the heating field and with electron separation feature seems is a viable way for creation of plasma with controllable EEDF.